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FOREWORD

The Model Output Statistics (MOS) approach has been used extensively to pre-
dict a variety of meteorological phenomena. The approach consists of extract-
ing statistical relationships between a number of model-generated variables
(the predictors) and the forecast variable of interest (the response - in our case,
cloud cover fraction). The model data are typically output from a physically based
(i.e., numerical) forecast model such as those used at the U.S. National Weath-
er Service.

In order to develop a MOS-based forecasting procedure with sufficient skill to
be of value to users, a tremendous amount of data must be acquired and ana-
lyzed. Furthermore, those data must be collected from the same physical envi-
ronment in which the model will be applied. Thus, a large collection of winter
data will, almost surely, be of little value for forecasting weather variables dur-
ing the summer. Similarly, if the large physical model whose outputs include
some of the predictors is changed for any reason, then MOS relationships must
be re-derived, or at least adjusted and verified, to accommodate the changes.

In spite of the above complexities, the possibility of large-scale applications of
the MOS approach to cloud-cover fraction forecasting is attractive to the U.S.
Air Force because of its extreme efficiency once the MOS functional relation-
ship has been established. This project, therefore, was funded to perform a
carefully designed feasibility study of the MOS approach to cloud-cover frac-
tion forecasting. The study considered forecasts of two response variables:
cloud-cover fraction and probability of cloud-cover fraction less than a specified
threshold value. The latter response variable is of special interest to one part
of the customer community.

The one year of data made available to TASC by the government for this feasibil-
ity study would not be adequate to support full development of an operational
MOS forecasting system valid over future years. It was, however, adequate to
judge feasibility in terms of potential accuracy of the forecasts, variability of the
forecast equations with seasons and with physical locations, and similar issues.

xi



ACKNOWLEDGMENTS

I would like to acknowledge the efforts of the other members of the MOS
team at TASC: Drs. Paul Janota (consultant), David Marcus, Charles Med-
ler, and David Whitney. A special acknowledgment to Dr. Gary Rasmussen
who was heavily involved with the early phases of the project and who
wrote the technical proposal (Ref. 26) for this effort from which much of
the background material in this report was taken.

xii



1. INTRODUCTION

1.1 OVERVIEW OF OUR GOALS AND METHODOLOGY

The goal of this project is to '"demonstrate whether or not the model output statistics
(MOS) approach should be considered as a serious contender for a low-cost, low-risk im-
provement to the current Air Force Global Weather Central (GWC) cloud amount forecasting

system" (Ref. 26). The Department of Defense has assigned GWC the task of providing accu-

rate, timely, global cloud forecasts at three-hour intervals out to 48 hours (Ref. 9). Reduced
visibility due to clouds in the fields of view of electro-optical sensor systems adversely im-
pacts military operations such as reconnaissance missions, tactical air strikes, and mid-air
refueling. Tb maximize the chance of mission success, Army and Air Force decision makers
require accurate, timely forecasts of cloud amount. In addition, mission planning may re-
quire forecasts of the probability of exceeding some mission-specific cloud coverage.

During this project, TASC developed model output statistics regression models for
3-, 6-, and 9-hour cloud amount forecasts and compared the results to persistence fore-
casts to determine the utility of the MOS approach for short-range cloud prediction. Re-
gression models were developed for up to eight different times of day on the eighth-mesh

grid (approximately 40 km grid spacing at midlatitudes) within climatologically distinct
regions of the northern hemisphere during all seasons. As data sources for the MOS fore-
casts, we used total cloud amount fields from the Real-Time NEPHanalysis (RTNEPH)
model and meteorological variables from the Air Force Global Spectral Model (GSM). We
also used terrain type and elevation variables from a terrain database (on the eighth-
mesh grid) compiled at Phillips Laboratory. The RTNEPH cloud amount fields were also

used as "ground truth."

The modeling process consisted of the following major components. A more com-
plete description of the process can be found in Section 3.

STEP 1 Construct clusters of RTNEPH grid points based on cloud climatology
and data availability. Select clusters for which to develop regression models.

STEP 2 Develop a pool of potential predictors from RTNEPH and GSM model
data. This pool includes raw and derived variables along with averaged, differ-
enced, and transformed variables.

STEP 3 Develop regression models for total cloud amount using variables se-
lected from the pool of predictors. Determine conditional probabilities of cloud
amount thresholds.

1



STEP 4 Predict MOS model performance for future data sets using the jack-
knife resampling technique to analyze total cloud cover forecasts and a Bayesian
approach to analyze probabilistic forecasts.

Although the overall process is shown as a linear sequence, we continued to iterate
on the sequence as the modeling effort proceeded. Keeping in mind the goal of the project
- a feasibility study - we emphasized research and exploration and a dynamic modeling
process in which findings from later steps led us to modify earlier ones.

Although not tasked to develop exhaustive operational MOS-based forecast models,
we were acutely aware of the operational constraints of the RTNEPH and GSM model runs.
Therefore we were careful to include only those data sources that are operationally available
at any given time as MOS inputs. Our development data set consisted of one year (1989) of
Global Spectral Model output mapped to RTNEPH coordinates within 20 RTNEPH boxes in
the northern hemisphere and the RTNEPH cloud analysis grids for the same time period and
spatial regions. Both of these data sets are described further in Section 2. Jacks et al., in
Ref. 17, point out that at least two years of model data are needed to develop meaningful MOS
equations based on the Nested Grid Model. We use one year of data in this feasibility study
with the understanding that more robust models that better account for year-to-year meteo-
rological variability would be necessary in an operational setting.

1.2 OVERVIEW OF THIS REPORT

The remainder of this section discusses the current forecasting capabilities at GWC
and the potential improvements to be made by using a MOS approach. Section 2 provides
descriptions of the RTNEPH and GSM data sources used in model development. Section 3
contains a description of our modeling process along with the modeling and validation re-
suits. Finally, we summarize and make recommendations for further research in Section 4.

1.3 THE CURRENT GWC CLOUD FORECASTING SYSTEM

At present, GWC operates a Global Spectral numerical prediction Model (GSM), a
global cloud analysis model (RTNEPH), a global High Resolution Analysis System (HIRAS)
to initialize the GSM, and three cloud forecasting models: the Tropical Cloud Forecast Mod-
el (TRONEW), the Five-Layer Cloud Forecast Model (5MAYER), and the High-Resolution
Cloud Prognosis Model (HRCP). Figure 1 depicts the system's component models and the
data flow among them. The RTNEPH cloud analysis model provides initial data for the

2
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Figure 1 Global Weather Central Cloud Analysis and Forecast System

winde cloud forecast models. It and the Global Spectral Model are discussed in some detail
in Section 2. Here we summarize the three cloud forecast models.

Tropical Cloud Forecast Model (TRONEW--The TRONEW model (Ref. 9) is
based on RTNEPH cloud analyses. It persists the diurnal cycle for 24 hours, and outputs
total cloud amounts and layer cloud amounts and types at three-hour intervals out to 21

hours. The complete half-mesh grid (approximately 100 km grid spacing at the equator)
is used in both hemispheres to provide global coverage. Known problems include: the sim-
ple forecast technique (no dynamics), poor horizontal resolution, and poor temporal reso-
lution in the tropics due to inadequate DMSP satellite coverage in that area.

Five-Layer Cloud Forecast Model (6LAYER)--The 51AYER model (Ref. 9) in-
puts are the RTNEPH cloud analyses and the HIRAS/GSM analyses and forecasts of
wind, temperature, and moisture. It uses a quasi-Lagrangian trajectory scheme to advect
temperature and condensation pressure spread (CPS). A subset of the half-mesh grid (an
octagon which excludes latitudes between 0 and approximately 13 degrees) is used in each
hemisphere. Forecasts are made on five vertical levels: gradient (60 mb above the sur-

face), 850, 700, 500, and 300 mb. Output is generated every three hours to 48 hours in the

3



northern hemisphere and to 24 hours in the southern hemisphere. Output parameters in-
clude: total cloud amounts, layered cloud amounts, precipitation amounts and types, ac-
cumulated precipitation, icing type, dew point depression, trajectories, Showalter
stability, temperature, and CPS. Known problems include: lack of coverage near the equa-
tor, poor performance in the boundary layer, lack of entrainment and cumulus develop-
ment, poor handling of cirrus and fog/stratus discrimination, and the simplicity of the
empirical relationship between CPS and cloud amount.

High-Resolution Cloud Prognosis Model (HRCP)-The HRCP model (Ref. 9)
inputs are the RTNEPH analyses, the 5LAYER CPS and trajectory fields, and terrain
heights. It can use either persistence or forecast trends in CPS to project CPS out to three,
six, and nine hours. CPS is then related to cloud amount using empirical curves originally
developed in the 1960's. The HRCP model operates in a window on the eighth-mesh grid.
The window is movable in the sense that up to a maximum of 13 ofthe 120 RTNEPH boxes
(60 per hemisphere) may be specified for a given run. Each box contains 4096 (64 by 64)
points with a nominal spacing of 40 km. Outputs include total cloud amounts and cloud
amounts and types for low, middle, and high layers. Known problems include: low quality
forecasts for the boundary layer and the middle layers, and inadequate parameterization
of cloud amount as a function of CPS.

1.4 STATISTICAL CLOUD FORECASTING

1.4.1 Tlerminology

The terms forecast and predict (and their derivatives) are commonly used inter-
changeably in meteorology to imply a projection from an initial time to a later valid time.
This is a prognostic process. It may employ dynamical, statistical, subjective, or other tech-
niques. Unfortunately, both terms are also commonly used interchangeably in statistics
with an entirely different connotation. In statistics they imply existence of an association
between a dependent variable and a set of independent (or explanatory) variables. This
relationship may be prognostic, or it may be diagnostic (i.e., without a time projection).

In statistical models such as regression, the dependent variable is called the re-
sponse while the independent variables are called predictors. The terms dependent and
independent are unfortunate. While meaningful in the vocabulary of mathematical func-
tions, they lead to confusion in this context since the independent variables are usually
not statistically independent. Thus, we choose to use the terms predictor and response
rather than dependent and independent variables.
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To minimize likely confusion resulting from a dual use of the term predict, we adopt
the following conventions. The term predict (and its derivatives) will always be used to
imply application of a statistical model. As noted above, the statistical association may be
either prognostic or diagnostic. The term forecast (and its derivatives) will always be used
to imply a prognostic process, whether by statistical, dynamical, or other means. With

these conventions, a forecast may or may not be a prediction, and vice versa.

1.4.2 Three Basic Approaches

The three basic approaches to the statistical forecasting of weather parameters such
as cloud amount for a specified location, at a specified valid time are: the classical approach,
the perfect prog approach, and the model output statistics approach. In addition, various
combinations and extensions are possible. The three approaches are described below.

Classical Approach-Predictors are specified at the initial time. Cloud amount
is forecast for the valid time using a statistical method. Relevant techniques include cor-
relation, regression, conditional probability, and autoregressive moving average (ARMA)
time series models. A major shortcoming of the classical approach is that it ignores the
benefits of available dynamical forecast models.

Perfect Prog Approach-Predictors are specified at the valid time by a prognos-
tic process, usually numerical. Cloud amount is then diagnosed by a statistical technique.
Parameters of the diagnostic model (e.g., the regression coefficients) are derived from ob-
servations, not from forecast model outputs. Since the statistical model is unaware of the
forecast model bipses, it cannot correct for them. From one point of view, however, this
shortcoming is aii aavantage: the diagnostic model will not require revision when the fore-
cast model undergoes a significant upgrade.

Model Output Statistics Approach-Predictors are specified at the valid tame
by a numerical forecast model. Cloud amount is diagnosed by a statistical model. Parame-
ters of the diagnostic model are based on both observations of cloud amount and on numer-
ical model forecasts of the predictors. Since the statistical model coefficients are derived

from forecast model outputs, the MOS forecast can correct inherent numerical model
biases. The model output -• tis*ics approach usually outperforms both the classical ap-
proach and perfect prog approach because it uses more information than its competitors.
This assumes, of course, that an adequate development database is available.
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A key point to keep in mind concerning the MOS approach is that although it can

account for systematic errors in the driving model, it cannot account for random model
errors. In addition, any significant changes to the underlying forecast model will require
that a new set of model equations be developed based on at least one or two years of model
output. In the end, of course, the quality of the MOS model is strongly dependent on both

the consistent performance and accuracy of the driving forecast model.

Various extensions to and combinations of the three basic approaches to statistical

cloud forecasting are possible. We used a combination of the classical and model output
statistics approaches in this effort. That is, we included both observations at the initial

time and forecast variables at the valid time in the pool of potential predictors.

1.4.3 Recent Work Using the Model Output Statistics Approach

The body of literature on model output statistics is very large. Here we outline some

of the developments in MOS cloud amount forecasting.

Model output statistics methods for cloud amount forecasting date back to the early

1970s and the pioneering work by Glahn at the National Weather Service's Technique De-
velopment Laboratory (Ref. 13). With Lowry, he developed multiple linear regression
equations for coded cloud amount (0=clear, 1=partial obscuration, 2=thin scattered, ... ,
7=overcast, 8=obscured) at four stations for four times of day. They reported success using

observed cloud amount, and forecasts of mean relptive humidity, saturation deficit, and
1000 mb zonal and meridional wind components. Interestingly, in all cases, the forecast
time that was selected for humidity variables by their screening procedure was later than
the MOS forecast valid time. By using the MOS methodology, they were able to detect a
phase error in the model humidity field.

A defect in their scheme was use of a coded cloud amount rather than a categorical

cloud amount. By 1974, Glahn realized this error (Refs. 14 and 15) and switched to a
REEP (Regression Estimation of Event Probability) forecast of categorical cloud amount

(see Section 3.1 for a brief description of the REEP technique). He also dropped the surface

observation as a predictor and reported on a problem with choosing the category with
highest predicted probability, namely, biased forecasts. By 1976 (Ref. 7), Carter and

Glahn reported a solution to the bias problem: inflation ofvariance followed by multiplica-
tion by the "minimum bias matrix" adjustment factor.
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In a 1978 AFGL technical report (Ref. 16), Glahn reported on a design of an auto-
mated MOS system for the Air Weather Service. In 1985, Perrone and Miller (Ref. 21) re-
ported that the generalized exponential Markov (GEM) model compared favorably with
MOS for cloud amount forecasts. In 1988, Brunet et al. (Ref. 4) reported that for short-
range cloud amount forecasts in Canada, perfect prog was superior to model output statis-
tics when the surface observations were used as predictors. In 1989, the opposite
conclusion was reached by Carter et al. (Ref. 8) for U.S. forecasts.

Finally, in 1990, Jacks et al. (Ref. 17) reported on a new MOS-based cloud amount
forecasting system based on output from the NWS Nested Grid Model. Again, categorical
cloud amount was forecast, but a new threshold technique was used to remove bias. Sig-
nificant predictors included forecasts of mean relative humidity, relative humidity at var-
ious levels, vertical velocity, and 850 mb moisture convergence. In addition, Jacks et al.
used a variety of "binary" predictors, i.e., predictors whose value is one if a certain criteri-
on is met and zero otherwise. An example of a binary predictor is the relative humidity
at the surface tested against various percentage thresholds.
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2. DATA SOURCES

Forecasts from the Air Force Global Spectral Model and Real-Time Nephanalysis

data were selected by the Government for use during model development in this effort.
The RTNEPH data were also used as "ground truth" because they represent a unique, uni-

formly-derived representation of global cloud conditions. In addition to those two meteo-
rological data sources, we used a terrain database compiled at Phillips Laboratory on the

eighth-mesh grid that contains terrain type (land, water, coast) and elevation in meters
at each grid point.

A large part of our MOS effort was spent obtaining, preparing, and validating our

year-long developmental database. GSM data were first generated and then remapped to
the RTNEPH grid system by government personnel at Phillips Laboratory. RTNEPH data

were obtained directly through the Air Force Environmental Technical Applications Cen-
ter (USAFETAC). Descriptions of the RTNEPH and GSM data sources are provided in the
following sub-sections. Along with those descriptions, we also document the data process-
ing and validation tasks that were an early part of the effort. All the figures for this section
are included at the end of the section, starting on page 19.

2.1 RTNEPH GRIDDED CLOUD COVER

2.1.1 Data Description

The RTNEPH data archive has been maintained by the U.S. Air Force meteorolo-
gists since 1983 when the RTNEPH format replaced that of the previous 3DNEPH ar-

chive. Formats and procedures of RTNEPH are summarized thoroughly in Ref. 23, but

documentation cannot capture the extreme complexity of the procedures and the degree
of human interaction required to produce this massive data set operationally on a 3-hour
cycle without interruption. The RTNEPH archive is produced by Air Force meteorologists

at GWC and at USAFETAC's Operating Location A at Asheville, NC. A complete global
RTNEPH analysis is provided every three hours in the northern hemisphere and every
six hours in the southern hemisphere using data from two sources: the DMSP satellites

and the Automated Weather Network (AWN).

AWN data include surface, upper air, and aircraft pilot report information. These

point data are of great value when and where available. The fractional cloud cover esti-

mates by trained surface observers can be especially valuable in establishing the output
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cloud cover information described below. Unfortunately, in the U.S. even these data are
less valuable than they might be because Airways codes (clear, scattered, broken, and
overcast) are used by surface observers instead of the "eighths" categories used in most
locations world-wide. Since surface observers and reporting aircraft are not available
around the clock or around the world to support RTNEPH requirements, it is on the satel-
lite data that most of the data archive depends.

The Operational Linescan Scanners (OLS) on two DMSP satellites (F-8 and F-9)
currently provide reflectance and radiance data with approximately 0.6 km visible and
thermal IR resolution as they trace 101 minute, sun-synchronous orbits around the earth.
A third satellite (F-10) is in a non-circular orbit and is used only occasionally at GWC.

Most points on the earth are scanned four or more times per day by the two OLS instru-
ments. Using thresholding techniques, cloud/no-cloud analyses are derived from the
DMSP data and the fraction of cloudy pixels within the area represented by each grid
point becomes the satellite-based estimate of cloud-cover fraction. To the extent possible,
layered cloud information is extracted from the IR signals.

Figure 2 shows the importance of the time flag reported in the RTNEPH data. Due
to the geometry of the satellite paths, certain areas of the globe are updated more often
than others; the polar regions receive much more coverage than the equatorial regions.
The upper curve in Figure 2 represents the time between consecutive DMSP observations
as a function of latitude along a fixed meridian (300 E longitude) by the current constella-
tion. As we will see in Section 2.1.3, the age of the data played an important role in the
selection of model regions and times for which to perform the model development as well
as in the predictor selection itself.

Probably the most critical step in the RTNEPH procedure is that of merging the two
data sources to produce the best possible assessment at each grid point. For many grid
points the satellite-derived values are the only data available. In some cases, human in-

tervention, called "bogusing," can occur during RTNEPH generation especially at earth
locations of particular interest or known to exhibit particular systematic problems (e.g.,
coastal areas with persistent low clouds, snow-covered ground, etc.).

Each eighth-mesh RTNEPH analysis produces up to 4096 grid points within each of
120 RTNEPH boxes (60 in each of the northern and southern hemispheres). Grid point spac-
ing varies as a function of latitude from 51 km near the poles to 26 km near the equator.
Figure 3 shows the 60 RTNEPH boxes that make up the northern hemisphere. In the figure,
we highlighted the 20 boxes of interest in this effort as selected by government personnel.
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Data items at each grid point include both quantitative information regarding

cloud cover and qualitative information on weather conditions and data quality (see
Table 1). We extracted total cloud amount information, the time flag, and eight diagnostic
flags for our MOS development as described below.

2.1.2 Data Preparation

All data processing was performed on the computers at Phillips Laboratory. Com-
plete RTNEPH analysis fields were received from USAFETAC on 9-track tape in box-time

order. Each tape holds four months of data (reported every three hours: 0, 3, 6, 9, 12, 15
18, 21Z) for one box. The complete data set fits on sixty 9-track tapes (20 boxes, for 12
months). By selecting only certain fields from the total data set, we were able to reduce
the number of tapes required for this feasibility study to seven.

Table 1 RTNEPH Gridpoint Information

Cloud Data

Total Cloud Amount (in percent of grid area covered)

For up to four cloud layers:
Cloud Amount (rounded up to next higher 5 percent)
CloudType
Cloud Base Height
Cloud Top Height

Weather Data

Present Weather
Surface Visibility

Data Quality Information

rime Flag for Data Age
Source Flag for Layer Data
Diagnostic Information ("best report" flags, viewing conditions, bogus flags,...)

The exact format of the USAFETAC tapes is described in the RTNEPH User's

Handbook (Ref. 23). Briefly, the RTNEPH database consists of a number of variables per-
taining to cloud cover (layer amount, type, and base and top heights as well as total cloud
amount), qualitative information on weather conditions, and data quality indicators. For
this effort we were only concerned with total cloud amount, to be used both as a predictor
and as ground truth. We did not take layer information into account for a variety of reasons
going beyond our desire to control costs and computational complexity. For example, it is
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known that the RTNEPH analysis model is less accurate for middle layer clouds than for
the highest and lowest layers which can be observed by satellites and human observers.

Furthermore, many critical operational missions can be served with total cloud amount

forecasts alone.

Along with header information (including box number, year, month, day, and hour),
we extracted three single-byte variables for each eighth-mesh grid point. They are:

"* total cloud cover amount (0-100%)

"• time in hours of the newest data at the point (0-255)

"• 8-bit diagnostic value, where each of the 8 bits represents one diagnostic flag
as follows:

bit 1 - point was bogused
bit 2 - conventional report was included
bit 3 - data from a conventional report was spread to this point
bit 4 - visual satellite data were included in this analysis
bit 5 - IR satellite data were included in this analysis
bit 6 - low level cloud has been persisted past normal data cutoff time
bit 7 - although the visible satellite observed cloudy, point was marked

clear for lack of supporting data
bit 8 - fog/haze superseded by other weather elements in present weather.

As we will discuss later in Section 3, we used the total cloud amount directly as a
predictor and as ground truth. The data flags were used to eliminate old and/or question-
able data points from the regression analysis.

2.1.3 Data Validation

RTNEPH data validation occurred during tape processing at Phillips Laboratory

and later on TASC computers. Our goals during this task went beyond simply validating
the data, to include data analysis. In validating the RTNEPH data we were able to detect
patterns in the data and consider the effects of data timeliness, cloud cover distributions,

and artifacts on the regression model development. Data validation and analysis con-
sisted of the following components:

"* check headers for correctness

"* verify that data fields in adjacent boxes are continuous across box boundaries

* compare total cloud amount fields with daily weather maps

11



"* visually analyze concurrent cloud cover, time, and diagnostic flags
"* generate histograms of cloud cover, time, and diagnostic flags.

The last three components deserve further description.

Comparison with weather data-We compared cloud cover fields in box 45,
which includes the U.S. east coast, with daily weather maps produced by the NOAA Cli-
mate Analysis Center for the same region over a three-month period (February-April
1989). Figure 4 shows an example in which a strong front is present in the daily weather
map over the east coast stretching from Virginia to Nova Scotia. The clouds associated
with that front are clearly visible in the corresponding RTNEPH data field. Over the
three-month period we were able to qualitatively verify the RTNEPH analysis fields on
days that had strong cloud signals.

Visual analysis--In this task we simultaneously displayed (for a selected box/
time) gridded cloud cover amount, data age, and eight diagnostic flags. By viewing all ten
data fields at one time, we were able not only to see artifacts in the cloud amount fields,
but also to use the ancillary diagnostic data to determine the source of the artifacts. For
example, linear artifacts are commonly found in RTNEPH cloud amount fields. By ana-
lyzing the time and diagnostic flags, it is clear that those linear artifacts frequently sepa-
rate areas ofdistinct "age" and form the boundaries of satellite swaths through the region.
Figure 5 shows an example of just this type of artifact.

The upper-left image in Figurt- 5 shows fractional cloud cover (black represents
clear, white is used for overcast, and a gray scale is used to represent partially cloudy grid
points). The next image to the right shows the relative age of the data used in the
RTNEPH analysis. Here the gray scale changes from dark for newer data to light for older
data. The next eight binary images are the eight diagnostic flags. In those images white
represents 0 (the flag is not set) and black represents 1 (the flag is set). The 8 diagnostic

flags are described briefly in Section 2.1.2.

Other common features found in the RTNEPH cloud amount fields are the star- and
cross-shaped artifacts that are a sign of "spread" data. That is, cloud cover at one grid point
is "spread" into adjacent grid points. Again, by viewing the diagnostic flags, data age, and
cloud cover fields simultaneously, we were able to determine that this type of artifact is a
characteristic of the RTNEPH analysis algorithms, not a data processing error. Figure 6
shows a case where spread data are clearly visible. The format of the ten images is the
same as described above. We decided to remove all spread data points from our model de-
velopment data set.
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The visual analysis task was important not only to verify our data processing, but to

understand the strengths and weaknesses of the RTNEPH data fields and the effects of both

on regression model development. By viewing a large number of data fields we were able to

qualitatively compare data from different regions, seasons, and time-of-day. We looked for

the number and type of artifacts present, the relative percentage of surface observations

and satellite data used, the age of the data and how it changed with time of day, the frequen-

cy of bogused data points and any missing data. From this analysis, we were able to esti-

mate the potential limitations of the RTNEPH data both as a predictor and ground-truth

data source, especially with respect to the age of the data in certain regions.

Histogram generation--This was the most quantitative and telling of the data val-

idation and analysis tasks. Following directly from the qualitative visual analysis described

above, we generated histograms for the cloud cover, time flag, and two of the diagnostic flags

to better understand these data and their potential effects on model development. Figures 7

through 15 include histograms of fractional cloud cover and the data time flag for several

boxes, seasons, and times that are representative of the many cases we looked at. These fig-

ures are discussed below (refer to Figure 3 for the geographic locations of each box).

We begin with a discussion about the time flag and its significance. A key element

of short-range (temporal) forecasting is up-to-date initialization data. A key element of

forecast validation and regression modeling is up-to-date validation data. Because we

used the RTNEPH cloud cover fields in both roles, its temporal characteristics were espe-

cially important for model development.

In many regions of the globe, especially in the tropics and over water, the RTNEPH

is almost solely driven by satellite observations at sparse intervals, thus there are large

gaps in the data. These data gaps limited the number of regions and times for which we

could develop meaningful models and from which we could draw meaningful conclusions

regarding forecast quality based on comparisons with persistence.

Figure 7 shows the fraction of cloud data in the RTNEPH that is less than three

hours old for box 34 (mid Pacific). This plot is representative of the problems in ocean re-

gions: very few, if any, automated weather sites and scanty satellite coverage, resulting

in large time gaps between cloud analysis updates. A plot of the percentage of new (i.e.,

less than three hours old) data in box 61 (including Colombia and Venezuela), shown in

Figure 8, shows similar characteristics. Figure 9 shows a histogram of the data age for box

45 (east coast U.S. and western Atlantic) at 21Z. In this example, less than 20% of the data

are less than 7 hours old.
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On the other hand, box 30, which includes eastern Europe and western Russia, has
a large automated weather network and more frequent satellite coverage. Thus, a large per-
centage of the grid points are "new," as shown in Figure 10. A histogram of box 44 data (cen-
tral U.S. and Canada) shows similar results (see Figure 11). Those cases with the most
up-to-date data will provide the best evaluation of the potential value of the MOS approach.

We found a wide variety in cloud cover means and distributions across the 20-box
data set. Some of that variety can be seen in Figures 12 through 15. For example, Figures 12
and 13 (containing data for box 61 afternoon and evening, respectively) show the diurnal
differences in cloud cover characteristics of the tropics. Figure 12 has almost 15% fewer grid
points in the two end categories, clear and overcast, than Figure 13. Thus, a greater per-
centage of the grid points in the afternoon are partly cloudy which is characteristic of pop-
corn cumulus which depend strongly on diurnal heating.

Cloud patterns in the winter at midlatitudes (Figures 14 and 15) show a different diur-
nal signature whose dominant feature is the pronounced clearing at night. A unique artifact
present only in the those boxes containing regions of the U.S. is the peaks in cloud cover at 25
and 75%. These two values correspond to the U.S. Airways codes for scattered and broken, re-
spectively, and can be seen clearly in these two figures corresponding to cloud cover in box 44.

By analyzing these histograms and many others we were able to quantitatively
verify the RTNEPH data. In addition, this analysis led us to concentrate our model devel-
opment efforts on those regions and times for which we would best be able to evaluate the
MOS approach with respect to persistence for 3-, 6-, and 9-hour forecasts. This precluded
those regions and times for which little up-to-date cloud cover data were available, be-
cause in those cases, persistence dominated. As an extreme example, if all the grid points
for a given valid time in a development data set had cloud amounts that had not been up-
dated in over 9 hours, a comparison of the valid-time RTNEPH cloud cover to the initial-
time (persisted) cloud cover would result in 100% skill for 3-, 6-, and 9-hour forecasts.
Similarly, the MOS-produced forecasts would perform 100% because they also use per-
sisted cloud cover in the predictor pool. Evaluating these forecasts would hardly provide
a worthwhile or meaningful assessment of the MOS approach.

On the other hand, though evaluation requires only the most current data, operation-
al forecast models must use whatever data are available at initialization time. Keeping both
of these requirements in mind, we included only those data points whose valid-time
RTNEPH age was less than three hours in model development and validation, but we had
no cutoff age for the persisted RTNEPH cloud cover used as a predictor in the MOS model.
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2.2 GLOBAL SPECTRAL MODEL OUTPUT

2.2.1 Data Description

The Air Force Phillips Laboratory maintains and runs a copy of the twelve-layer
Global Spectral Model that was the primary source of model data for this effort. The GSM
(Ref. 24) is based on integration of equations representing five prognostic variables:

absolute vorticity

divergence

temperature

surface pressure (logarithm)

specific humidity.

From these, four additional diagnostic variables are computed routinely:, geopotential height,
vertical velocity, and the u (zonal) and v (meridional) wind components.

The vertical coordinate used within the model is the normalized pressure or "sigma"
coordinate. Typically, model variables are interpolated to constant pressure mandatory levels
for output as shown in Table 2. However, in this effort we were provided with wind, tempera-
ture, and humidity variables for sigma layers as used in the model, thus avoiding errors
introduced by interpolating from sigma to mandatory levels. The thirteen sigma levels that
define the twelve sigma layers used in the GSM are shown in Figure 16.

Moisture is represented in the GSM by the mixing ratio, or equivalently, specific
humidity (one of the prognostic model variables). Evaporation from the oceans is repre-
sented in the model including the impact of the surface wind speed on the evaporation
rate. Evaporation from land, however, is not represented and is a known shortcoming of
the present model.

Spatial resolution of the GSM is limited by the 40-wave truncation of the spherical
harmonics used to represent the meteorological fields at each pressure level. The 40-wave
model can support resolutions down to 250 km near the equator, but it is often evaluated
on a 2.50 by 2.50 grid (about 280 km x 280 km at the equator). For this effort we obtained
GSM outputs on the half-mesh grid (approximately 100 km grid spacing near the equator)
that were produced by interpolating from the 2.50 by 2.50 grid to the half-mesh grid. That
interpolation was performed by personnel at Phillips Laboratory.
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Table 2 Air Force GSM Forecast Fields

ESW E t I I
FIELD

Sea-level Pressure X
Heights (D-Value) X X X X X X X X X X
Temperature X X X X X X X X X X X
Temperature Advection X
U-component Wind X X X X X X X X X X X
V-component Wind X X X X X X X X X X X
Vertical Velocity X X X X X X X X X
Relative Humidity X X X X X
Specific Humidity X X X X X X
Dewpoint Depression X X X X X
Vorticity X X X
Vorticity Advection X
Stream Function X X X X X X X X X X
Tropopause Pressure X
Tropopause Temperature X
Tropopause Height X

The GSM generates forecasts every 15 minutes out to 24 hours and is initialized
twice a day at OZ and 12Z. For this effort we obtained forecasts every 3 hours to match the
temporal resolution of the RTNEPH data. We obtained both the OZ- and the 12Z-initial-
ized model runs every day of 1989 for the twenty boxes shown in Figure 3. For this study
GSM model runs were initialized with historical HIRAS data and thus were identical to
operational model runs at Global Weather Central for that same period.

2.2.2 Data Preparation

The Global Spectral Model runs were performed on the Cray2 at the Weapons Lab-
oratory in Albuquerque, NM by Phillips Laboratory personnel. In a post-processing step,
spectral outputs of the GSM were converted to latitude-longitude coordinates, vorticity

and divergence values were translated to u and v wind components, and specific humidity
was transformed to relative humidity. Finally, a nine-point quadratic interpolation was

used to interpolate from latitude-longitude coordinates to the half-mesh RTNEPH grid.
These data were then passed on to TASC for further processing.
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As part of our data processing task, we sorted the processed GSM outputs from syn-
optic order to box/time order using the computers at Phillips Laboratory. We used box/
time arrangement throughout this effort because it was the most convenient for
developing regional models. During the sorting process we also scaled the 32-bit data val-
ues at each grid point to 16-bit integer values to save space and speed up processing, and
yet retain the desired accuracy.

The resulting data files contained a header for each forecast time that included: box
number, year, month, day, model initialization time (OZ or 12Z), forecast time (3-, 6-,...,
24-hour forecasts), and sigma layer heights. The remainder of the data files contained the
following gridded variables on the half-mesh grid at up to ten vertical levels: u wind (10
sigma levels), v wind (10 sigma levels), temperature (10 sigma levels), relative humidity
(lowest six sigma levels), surface pressure, and surface height.

Because our model development data set contains model runs initialized both at OZ
and 12Z, and because each run produces forecasts out to 24 hours, we have two forecasts
available at any given valid time. For example, for a 3Z valid time, we have the 3-hour
forecast from the 0Z model run of the same day and the 15-hour forecast from the 12Z mod-
el run of the previous day. However, both of these forecasts are not always available due
to operational schedules. In our example of a 3Z valid time, output from the model run
initialized at OZ would not be immediately available at OZ in order to make a 3-hour fore-
cast valid at 3Z. Similarly, there would be no OZ-initialized data available for the 6- or
9-hour forecasts valid at 3Z. Figures 17 through 20 show time lines for each of four fore-
cast valid times (0, 3, 6, and 9Z) and the GSM data available for the 3-, 6-, and 9-hour fore-
casts at each time. Similar timelines can be made for forecast times 12Z through 21Z in
which the OZ and 12Z GSM data sources are switched.

For any given box, season, and valid time, a single model development data file was
built that included the GSM data for the valid time, the corresponding RTNEPH cloud
amount and diagnostic fields, along with RTNEPH cloud cover from the forecast initial-
ization time back to 24 hours before the valid time to use for persistence.

2.2.3 Data Validation

Data validation tasks for the Clobal Spectral Model data fields were similar to
those we performed for the RTNEPH data. Briefly they were:

* check headers for correctness

* verify that data fields in adjacent boxes are continuous across box boundaries
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"* visually analyze data fields

"* generate histograms of model variables.

The last two tasks are described in more detail below.

Visual analysis-In this task we displayed the u, v, temperature, relative humid-
ity, surface pressure, and surface height fields for many selected boxes and times. We dis-
played all layer data at one time to verify continuity in the vertical dimension. All data
were displayed as gray-scale images. We analyzed the images for potential artifacts and
overall structure. We did not find any questionable data fields.

Figures 21 through 23 show examples of the images analyzed. The first of those fig-
ures shows the u field for a specific day and time in box 30. The upper-left image in the se-
quence is the surface-level u field and each consecutive image shows the u field at the next
higher sigma layer. We use a gray scale to show the relative magnitude of the field value,
where black is low and white is high. Figure 22 shows the similar images for the correspond-
ing temperature field. Figure 23 continues with the same box and time and includes the
relative humidity at the lower six sigma layers of the atmosphere and the surface pressure
and height fields. (Note how the surface height field follows the elevation contours we expect
to see for the region in Europe corresponding to box 30.)

Histogram generation-As a means to validate and better understand the MOS
data, we generated histograms to show the overall range, mean, and distribution of each
model variable in different locations and for different seasons and times. This activity nat-
urally led to generating histograms for meteorological quantities derived from the MOS
data as well, such as vertical velocity, divergence, etc. Example histograms of derived
quantities are sh4wr in Section 3.3. Here, in Figures 24 and 25, we provide examples of
histograms of the ,' SM variables: u, v, temperature, relative humidity, and surface pres-
sure for two different box seasons.
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BOX 34, SPRING
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Figure 7 Histogram of the Percentage of Grid Points That are Less Than
3 Hours Old as a Function of Time ofDay in Box 34, Spring
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BOX 61, SUMMER
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Figure 8 Histogram of the Percentage of Grid Points That are Less Than
3 Hours Old as a Function of Time of Day in Box 61, Summer
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BOX 45. SPRING. 21Z
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Various Ages in Box 45 Over the Spring Season at 21Z
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BOX 30. FALL
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Figure 10 Histogram of the Percentage of Grid Points That are Less Than
3 Hours Old as a Function of Time of Day in Box 30, Fall
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BOX 44, WINTER
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Figure 11 Histogram of the Percentage of Grid Points That are Less Than
3 Hours Old as a Function of Time of Day in Box 44, Winter
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BOX 61, SUMMER, 1 8Z (APPROX. 1 PM LOCAL TIME)
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Figure 12 Cloud Cover Distribution for Box 61, Summer
atApproximately 1 p.m. Local Time

29



BOX 61, SUMMER. 6Z (APPROX. 1AM LOCAL TIME)
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BOX 44, WINTER, 21Z (APPROX. 2PM LOCAL TIME)
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Figure 14 Cloud Cover Distribution for Box 44, Winter
at Approximately 2 p.m. Local Time
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BOX 44, WINTER, 9Z (APPROX. 2AM LOCAL TIME)
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Figure 15 Cloud Cover Distribution for Box 44, Winter
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Figure 17 Schematic Showing Which RTNEPH and GSM Data Are Available
for 3-, 6-, and 9-hour Forecasts Valid at OZ ('x' Marks the Data
Sources Used in Model Development)
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Figure 18 Schematic Showing Which RTNEPH and GSM Data Are Available
for 3-, 6-, and 9-hour Forecasts Valid at 3Z ('x' Marks the Data
Sources Used in Model Development)

34



V*Nd Tree

6 9 12Z 15 18 21 OZ 3 6

NEPH X x x x x X X X

GSM OZ 3-h-X-

NEPH X X X X X X X

GSM 0ZForecast

GSM 12Z

GSM 12Z i N

NEPH X x x X x X

GSNI OZ 9oreff

Figure 19 Schematic Showing Which RTNEPH and GSM Data Are Available
for 3-, 6-, and 9-hour Forecasts Valid at 6Z ('x' Marks the Data
Sources Used in Model Development)

VIN 11"m

9 12Z 15 18 21 OZ 3 6 9

NEPH X x X X X X X X

GSM OZ 9 K 3hu

GSMI 12Z I

NEPH X X x x X X X

GSM OZ I omcatw

GSM 12Z 14

NEPH X X X X X X

GSM OZ 9-hour
Forecast

GSM 12Z 14

Figure 20 Schematic Showing Which RTNEPH and GSM Data Are Available
for 3-, 6-, and 9-hour Forecasts Valid at 9Z ('x' Marks the Data
Sources Used in Model Development)

35



U) X

0

0 0

03
o

36I



ci)

> o

x

t ~r, U.0 o
0

bco

z rýc

!' 0 '

00I-

d 1 -' .,At:

**,$i O

'rj?

eq

LO

37



cu- 0

cos

cc 4

U)

0

0 0 Z

0ccQ

383



aov

an
I~ass

St
A's

OOJ
'--'U

- . - . . Y . , r

S0

a06 g

as

0t

bef

S3



II

1 06

IQ0 '4 @4 S a

@4 0
0cc

or

*ge0 50 -ONo

40?



3. MODEL DEVELOPMENT AND RESULTS

In this section we present the results of our modeling effort. A general introduction

of various regression techniques and the mathematics behind developing linear regres-
sion models can be found in most introductory statistics texts (Refs. 10 and 19 are good

examples) and will therefore not be included here. We will introduce those concepts

unique to our model implementation and development data set, but will otherwise as-

sume that the reader has a basic knowledge of linear regression for the following discus-
sion and the remainder of this report.

Throughout the model development process, we employed a commercial statistical

and graphical analysis software package called STATISTICAT'. It served as a database

management system for the model development data sets and provided a variety of regres-

sion techniques and corresponding significance tests, residual analysis, and graphing that

were critical to efficient modeling and analysis during this project. The STATISTICA"' soft-
ware package provided modules to perform multiple linear regression, using least squares

estimation, and nonlinear regression in which the user can estimate any arbitrary regres-
sion function and any arbitrary loss function. It also enabled us to save the forecast cloud

amounts and residuals to compute probabilistic forecasts off-line.

All of the figures discussed in this section are included at the end of the section,

starting on page 96.

3.1 OVERVIEW OF THE MODELING PROCESS

Model development consisted of the following four major steps. These four steps are

described at length in subsections 3.2, 3.3, 3.4, and 3.5, respectively.

STEP 1 Build clusters based on cloud climatology - The first step in the
model development sequence was to reduce the number of regression
models using principal components analysis. Regression models were
built for each cluster rather than for individual grid points. We per-
formed cluster analysis using principal components for four box/season
combinations including one polar, one tropical, and two midlatitude
boxes. Variables in the analysis included: cloud cover mean and scale
distance, terrain type, elevation, and grid point location.
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STEP 2 Build the pool of potential predictors-Using knowledge of meteo-
rological processes in general, cloud formation in particular, and some
trial-and-error, we selected variables from GSM outputs, RTNEPH
analyses, and the RTNEPH terrain database to include in the pool of po-
tential predictors. In addition, we derived other meaningful quantities
from these outputs for inclusion. We used this common pool of predictors
for all model development. We then selected a subset of these variables
for each box/season/time using a forward regression technique that
ranked the predictors in order of significance. Using only the most signif-
icant predictors, we estimated regression coefficients in Step 3.

STEP 3 Develop regression models--Many regression techniques are avail-
able. These include multiple linear regression, nonlinear regression, re-
gression estimation of event probability, empirical orthogonal functions,
regression trees, and many others. We used multiple linear regression to
predict total cloud amount at eighth-mesh resolution with the predictors
selected in the previous step. We developed equations for selected cases
(i.e., a particular box, season, and time). We extended model development
to predict probabilistic forecasts of cloud amount categories by analyzing
the distributions of the residuals as described later in this section.

STEP 4 Evaluate model performance-It is virtually always the case that a
statistical forecasting scheme performs better for the development data
set than for a new, independent data set. This may be due to fitting noise
in the development data set or to the incompleteness of the development
data set. We used the jackknife technique to estimate the performance
of our MOS approach and to determine confidence limits on that esti-
mate. In addition, we also compared the MOS results to those obtained
using simple persistence. The metrics we used in this comparison were
forecast skill scores (the Brier score, sharpness, and the 20/20 score dis-
cussed later in this section). Lastly, we validated the probabilistic fore-
casts using Bayesian analysis of the probability distributions obtained
using the model development data set and an independent set of data.

3.1.1 The Proposed Methodology Using REEP

In our original proposal (Ref. 26), we proposed developing MOS equations to fore-
cast total cloud amount and probabilities of cloud amount categories using the regression
estimation of event probability methodology (a linear regression technique) to support
two different forecast formats required by Air Force and Army decision makers. It turned
out that we were able to produce both forecast output types using a more efficient and di-
rect multiple linear regression technique which avoided some of the pitfalls of the regres-
sion estimation of event probability (REEP) method.
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The REEP method (Ref. 22) requires a categorical response variable. The first step

is to transform the RTNEPH continuous cloud amount to a categorical variable by binning

cloud cover into N non-overlapping categories. The single response used in multiple linear
regression is then replaced with N binary response variables. For each observation, the

response is one if the observed cloud amount falls within the corresponding category and
zero otherwise. Multiple models are built, one for each of the categories, all with exactly

the same predictor set and exactly the same database. The output of each model is an esti-

mate of the probability that the observed cloud amount is within the corresponding range
for a given realization of the predictors. A REEP model is constructed to guarantee that
the sum of the N probabilities is one. The predicted total cloud amount can be determined

from the N-vector of probabilities using a prescribed selection criterion (e.g., the most
probable category, the median category, etc.).

REEP posed two problems in our modeling effort. First, it is well known that al-

though the sum of the resulting probabilities is one, linear regression does not constrain

any individual probability to lie between zero and one, as a true probability must. It is
possible to deal with this problem by using a nonlinear response function such as the logis-

tic function (see Ref. 1), but this increases the computational costs immensely and for our

data set was therefore not a feasible solution. Alternatively, it is possible to scale the prob-
abilities, or to simply set those probabilities less than zero to zero and those greater than

one to one. This is rather an ad hoc and unsatisfying solution.

The second problem is the increased computational costs of developing the initial

predictor data set. There is no reason to believe that the same variables that are strong

predictors of overcast are also strong predictors of clear or partly cloudy. Therefore one
must determine the strongest predictors for each of the cloud cover categories from the

overall pool of potential predictors individually. That is a computationally intensive pro-
cess since the number of potential predictors is large (see Section 3.3). After selecting the

most significant predictors for each of the categories one can build a group that is common

to all of the categories (a somewhat subjective process) and perform the regression using
the common predictor data set. The actual work required then to perform the N multiple

regressions from the same predictor set is little more than that to perform a single regres-
sion because the covariance matrix does not change.
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In Section 3.4.3 we discuss the particulars of how we implemented REEP and show
the results of a sample case. Now we continue with a brief description of the alternate meth-
odology we adopted to replace REEP, and discuss how we generated both forecast output
types (total cloud amount and probabilities of cloud amount categories) from a single lin-
ear regression model.

3.1.2 An Alternate Methodology Using Actual Residuals

Our goal was to find an empirical linear function in which the response variable,
total cloud amount, is expressed in terms of k predictor variables selected from GSM out-
put, RTNEPH analyses, and other candidate predictors. It is important to note that this
model is linear in the predictors, but not necessarily in the meteorological variables, as
predictors may be transformations of meteorological variables.

Following the notation in Ref. 6, let xj, x2 , • •., Xk be k predictors and y be the re-
sponse variable, then the linear regression model is

Yi = 00 + PI~Xil + ... + PkXik + Ci i = 1, 2,. . ., n (3-1)

where

n is the number of sample observations in our data set

yi is the ith observation of the response

E, is the model error associated with yi

00' 01, ... I k are the unknown linear parameters.

This general linear model can be expressed in matrix form

Y = XB +E (3-2)

where

Y Y X = 1 XllX12 ... Xlk B B" E El

Y2 1 x21 x22 ... X2k 01 E2

Ynj 10xn Xn2 ... Xnk J LkJ n]
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In matrix form, the least squares estimate for the regression coefficient vector, i, is giv-

en by the following where the superscript "1r indicates matrix transpose
B = (XTX)-l xTy. 

(3-3)

The estimated regression equation is then
A A

Y = XB (3-4)
A

and E = Y - Y is the vector of model residuals.

To determine the probabilities of cloud amount categories, we used the results of

the general linear regression model described above. Our goal was to be able to answer the

following types of questions that are critical for many Air Force and Army mission opera-

tions:

1. Given a cloud amount forecast, what is the probability that the observed cloud
amount will be less than a critical threshold?

2. Given a cloud amount forecast, what is the probability that the observed cloud
amount will be within a critical range of values?

To answer these questions we must understand the characteristics of the error dis-

tribution in our model. To find the probability that the observed cloud amount will be less
A A A

than or equal to a critical threshold, c (i.e., Pr {Y < c)), first calculate Y = XB where B

is the best estimate for the regression coefficients using least squares estimation. Then,

the probability can be computed from the residual distribution as follows:

PrIY5c I YI

=PrIY+Esc I (3-5)
A A

=Pr1Es5c-Y I Y).

Figure 26 shows graphically how to compute the probability in Eq. 3-5 from a sample error

distribution; the shaded area under the curve is the probability referred to in Eq. 3-5

above. It is a trivial extension of that equation to compute the probability that the ob-

served cloud cover is within a specified range by finding the difference between the proba-

bilities of the two extreme thresholds that define the range.
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Linear regression assumes that model residuals, or errors, are normally distrib-

uted over the entire sample: E - N(0, A2). Our results have verified that when taken as
a whole, they are indeed approximately normal (see Figure 42 in Section 3.4.1). A naive
approach to computing the probabilistic forecast would assume that the residuals are nor-
mally distributed across any range of cloud cover estimates. However, over any range of
estimates, the associated residuals may be far from normal due to the bounded nature of
the cloud cover variable. In most cases the error distributions (especially for clear and
overcast forecasts) are in fact, U-, J-, or L-shaped. (See Figure 43 in Section 3.4.2)

Therefore, a better way to compute the probability in Eq. 3-5 is to use the actual
error distributions for the development data set. We divided the cloud amount forecasts
into 11 bins: 0-4%, 5-14%,..., 85-94%, 95-100% and then generated histograms of the
model errors for each of the forecast categories. The probability that the observed cloud
cover was less than a critical threshold, given the estimated cloud coverage, was computed
by summing the error histograms corresponding to that estimated coverage.

3.2 SPATIAL CLUSTERING OF CLOUD COVER

The first step in the model development sequence was to reduce the number of re-
gression models using principal components analysis. Regression models were built for
each cluster rather thai or individual grid points. This reduced the overall number of
models to be developed and also increased the size of the development data sets. Cluster-
based development did not reduce the specificity of the final models since parameters
used to define the clusters were also included in the pool of potential predictors.

Clustering was constrained to individual RTNEPH boxes and used location, ter-
rain, and cloud amount frequency distribution variables for each of the 4096 (i.e., 64 x 64)
RTNEPH grid points in a box. Specifically, the cluster data sets included, for each eighth-
mesh grid point: latitude, longitude, terrain elevation, terrain type, mean cloud cover, and
scale distance. The last two variables in this list are computed from the RTNEPH analy-
ses over one season (3 months) for 8 times of day.

Scale distance is a parameter of the Burger Area Algorithm (BAA) which was devel-
oped at the Air Force Geophysics Laboratory and is described in Ref. 5. The BAA is a model
of the probability that the areal cloud coverage is less than or equal to a threshold cover-
age value given the area, scale distance, and mean clearness. The scale distance can be
obtained by using the inverse BAA when provided with a cloud cover data set. It is a mea-
sure of the range of significant spatial autocorrelation of cloud cover.
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We performed cluster analysis using principal components for four box/season com-

binations including one polar, one tropical, and two midlatitude boxes. Principal component

analysis (PCA) has two main applications: 1) to reduce the number of variables in a data set

and 2) to detect relationships between variables. We used both applications in our analysis.

Using the STATISTICA' factor analysis module, we extracted principal compo-

nents from our four development data sets, excluding the terrain type variable. Succes-

sive principal components are extracted from the data. The first component is a best fit

through the data that maximizes the variance of that component, the second component

is orthogonal to the first and maximizes the remaining variability, and so forth.

Consecutive principal components account for less and less variability, thus it is

possible to reduce the number of variables by deciding to keep only the first few compo-

nents. The decision to cut off some components can be somewhat subjective, but a rule of

thumb is to keep those components which account for at least as much variance as what

one individual variable would account for. The variance of the individual variables (once

normalized) is one. Therefore if the variance of a principal component of the normalized

data set is greater than or equal to one, we will retain it.

Figures 27 and 28 show the variance of the five principal components calculated for

two winter cases: box 38 in the midlatitudes and box 61 in the tropics (refer to Figure 3

for the RTNEPH box definitions). The first figure, corresponding to box 38, shows a case

in which the first two principal components have variance greater than one. We retained

both components for further analysis. The second figure, corresponding to box 61, is an

example of the subjectivity involved in deciding how many principal components to retain

for analysis. In that case we chose to retain the first three components even though the
variance of the third component was slightly less than one.

Principal components are linear combinations of the input variables. Figures 29

and 30 show the normalized breakdown of the components into their parts. In these two

cases, the first principal component was strongly dependent on the mean cloud cover and

latitude. The scale distance parameter weighed heavily in the first component for box 38

and in the second component for box 61.

Although all that we have discussed so far in this section is the use of PCA for data

reduction, the goal of this clustering task was not to reduce the five terrain and cloud dis-

tribution parameters to two or three linear combinations, but to determine clusters of grid

points with similar characteristics. We used the principal components to determine how
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similar grid points were by looking for groups ofgrid points in a scatterplot of the principal
components. If the points were close in principal component space they were also close in

terms of cloud climatology.

We found that the grid points grouped strongly by terrain type (land and water), which
makes intuitive sense since cloud climatology is quite distinct in water and land regions and

the bulk of the grid points with the same terrain type are spatially close. Coastal grid points
seemed to be mixed between the two groups as expected. Figures 31 and 32 show the scatter-
plots for boxes 38 and 61. The figures for box 38 are two-dimensional scatterplots because
we retained only the first two principal components in our analysis, on the other hand, the

scatterplots for box 61 are three-dimensional to accommodate the three components we
retained for analysis.

The two other cases we studied showed similar results: both boxes 45 and 28
showed strong clustering by terrain type. Although not conclusive, this analysis led us to
believe that we could generate MOS equations for distinct terrain types within RTNEPH
boxes. Ideally, with much greater resources, it would be best to develop models for each
grid point individually and only after comparing the models, group points with similar
models into clusters. However, that type of development would require a much larger de-
velopment data set and modeling budget.

Findings in this task led us to develop a number of terrain-specific regression mod-
els for analysis. However, for the bulk of the models that we developed, we combined land
and water grid points to provide a greater number of data points for model development.

3.3 BUILDING THE POOL OF POTENTIAL PREDICTORS

The selection of variables to use as potential predictors was a critical task in the
model development process. We selected parameters based on input from personnel from
Phillips Laboratory, the Techniques Development Laboratory (TDL) of the National
Weather Service, and our own cloud modeling experts.

Potential predictors were taken primarily from the GSM half-mesh output fields

and included explanatory variables such as relative humidity, temperature, and surface
pressure as well as derived quantities, transformed variables, and differenced variables

(difference over 3-, 6-, and 9-hour periods). Other predictors included eighth-mesh cloud
amount analyses from the RTNEPH, eighth-mesh elevation and type from the RTNEPH

terrain database, latitude, longitude, date, and solar zenith angle.
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Our challenge was to limit the total number of variables to include in the predictor

pool without omitting good predictors of cloud cover at eighth-mesh resolution. Limiting
the overall number of variables was important since our findings may lead to future devel-
opment ofan operational cloud-amount forecast model in which accuracy and economy are
both major concerns.

Potential predictors included point variables (e.g., surface pressure and cloud
amount), column variables (e.g., temperature and wind at vertical sigma levels), field
variables (e.g., terrain elevation), and variables at times other than the valid time. Some

of the data fields were highly correlated. It was our goal to reduce the number of potential
predictors by taking advantage of this data redundancy using layer averaging, principal
components, etc.

The set of potential predictors we settled on included approximately eighty vari-
ables. The fifteen most significant of these potential predictors were selected for each box/
season/time using a "forward selection" scheme. These fifteen were then used as
predictors in final model development. Forward selection methods (discussed in Ref. 10)
represent one way to reduce the overall predictor pool. In those methods, variables are
selected one at a time. Once a variable is selected, it is retained without chance of later
being discarded. First the best single variable is selected. With k potential predictors, this
requires k simple (one-variable) regressions. Next, the second-best variable, given the
particular choice of the best, is selected by performing k-1 two-variable regressions. This
process is continued, adding one variable at each step, until the selection of an additional
variable is not warranted according to a pre-specified stopping rule or until all variables
have been selected.

Our stopping rule was based on the reduction in variance. We found that the first
five to ten variables accounted for the majority of the total reduction in variance achieved
with all the predictors. After looking at the results from many regions, seasons, and times,
we decided to select the strongest fifteen variables for use in model development. By keep-
ing fifteen predictors, we accounted for the bulk of the reduction in variance and drastical-
ly reduced the computational time of performing the regression. In addition, we retained
enough predictors as to not lose critical insights into the subtle differences in cloud pro-
cesses in varying locations, at varying times of day, etc.

In Section 3.4, we present our modeling results. For each case, we show which fif-
teen predictors were selected using the forward selection method and what the relative
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ranking of those variables was. It would probably not be necessary to use all fifteen predic-
tors in an operational model, but the increased computations for this feasibility study
were well worth the effort.

A complete list of the variables used in this study is included in Appendix A. We

briefly describe the RTNEPH variables below and then devote the remainder of this sec-
tion to describing the GSM-based predictors.

3.3.1 Candidate Predictors From the RTNEPH Cloud Analyses and

Terrain Database

These predictors included total cloud amounts for the initial time and for times at

three-hour intervals preceding the initial time back to 24 hours prior to the forecast valid
time. The MOS equations used these variables to model persistence effects and trends in
cloud amount. Terrain elevation and type were also included in the pool of predictors along
with the terrain gradient in the direction of GSM winds.

A key predictor based on the RTNEPH gridded analyses turned out to be advected
cloud cover. Intuition tells us that to forecast cloud cover at a point we should look upwind
to see what weather (i.e., cloud cover) will move into the area around that point over the
forecast time period.

We defined a relatively simple advected cloud cover predictor driven by forecast
winds at the valid time for the point of interest. We computed average low, middle, and
high layer winds (see below for how we defined the three vertical regions) over a horizon-
tal region including the point of interest and the eight surrounding half-mesh grid points.
We then assumed the winds acted constantly over the forecast period (3, 6, or 9 hours) to
find the upwind cloud cover. We determined the upwind cloud amount over a region the
size of a half-mesh grid point by averaging the nearest 16 eighth-mesh cloud amount val-
ues. We produced advected cloud amounts for low, middle, and high layer winds over 3-,
6-, and 9-hour periods. Further discussion of these predictors and their frequency of occur-
rence in the strongest fifteen predictors can be found in Section 3.4.

3.3.2 Candidate Predictors From the Global Spectral Model

Raw Variables

The GSM outputs available for use in this modeling effort included: u and v wind
components and temperature at the ten lowest vertical (sigma) levels, relative humidity
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at the six lowest sigma levels, surface pressure and model surface height for each grid

point on the half-mesh grid. Output variables from the OZ- and 12Z-initialized model runs
were both available, in general, though frequently data from only one model run were

used to develop the MOS equations to simulate operational constraints (see Section 2.2.2).

Two other variables were obtained directly from the GSM layer data. They are: the

maximum relative humidity, and the humidity at the layer above the maximum (this last
variable was suggested in Ref. 20).

Derived Variables

It is possible to derive a number of meteorologically important variables from the
"raw" u, v, temperature, and humidity variables mentioned above. An obvious predictor

for cloud amount that can be derived from these quantities is vertical velocity. Others in-
clude: divergence, vorticity, temperature advection, layer thickness, wind speed, vertical
wind shear, and a number of stability parameters. Each of these derived quantities is de-

scribed below.

Divergence - is a measure of how a fluid is expanding or contracting. In this ef-
fort, it is a measure of rresoscale motion in the atmosphere. In a simple way, convergence
(negative divergence) can be associated with colliding air masses, and positive vertical
motion which are both indicative of increased cloud cover. Positive divergence, on the oth-
er hand, can be a sign of clearing. Horizontal divergence is computed as the sum of the
partial derivatives of the u and v wind components, where u corresponds to the component
of the wind in the x-direction (zonal flow), and v corresponds to the component of the wind
in the y-direction (meridional flow)

Divergence = Vh .h au+u v (3-6)

where the subscript "h" specifies the horizontal components only. In practice, we can only

approximate this theoretical definition by computing the divergence at each half-mesh
grid point from winds - surrounding grid points. Figure 33 shows the geom" •y we used
to implement the horizontal derivatives. The divergence at the center-point .:•h -. e grid is

given by

Divh (Ua - ud) + (vd - Vb) (3-7)-- 2Ax 2Ay

where Ax and Ay are the distances between adjacent grid points in the x and y directions,

respectively. Divergence is very sensitive to errors in calculation because the two terms
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in Eq. 3-7 are usually small, often of opposite sign, and often very close in magnitude.
Thus we need to know the terms very accurately in order to make a reasonable estimate

of the divergence.

Vorticity - is a measure of the local rotation of a fluid. It is intimately connected
to divergence because as fluids converge or diverge their rate of rotation changes to con-
serve angular momentum. Mathematically, vorticity is given by

Vorticity = k• (Vh x"•) - - v u (3-8)

Implementation used approximate derivatives to determine the vorticity at the center of

the grid (refer again to Figure 33):

Vorth - (Va - Vc) (Ud - Ub) (3-9)2Ax 2Ay

Vertical Velocity - is a measure of the vertical motion in the atmosphere. It is

usually a good measure of convective activity and precipitation and thus, indirectly, cloud
cover. It is usually derived from divergence, and thus is sensitive to errors in the diver-
gence computation. There are many methods to compute vertical velocity. We used the
method followed in the Air Force version of the Global Spectral Model (Ref. 2). The vertical

velocity, 8, is the total derivative of the sigma coordinate as follows:

M + U) - V + DO(3-10)

where

()G= If( )do

0

1

()=J ( )do

0

C 7 v• Vq, q = log(pressure)

D = Divergence

and where f=0 atof 0 and = 1.
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In our implementation of this equation, we limited the vertical range over which
we performed the integrations to the ten reported sigma levels available to us. That is, the

part of the atmosphere above the top sigma level of our data (approximately 120 mb) was
ignored. Due to the nature of the MOS approach, this approximation was most likely of
little consequence, because MOS can use the trend in vertical velocity rather than the ab-
solute value as a predictor of cloud amount.

Temperature Advection - is a measure of how fast the temperature gradient is

changing. It can be a measure of baroclinic development and thus of the changes in cloud
cover. Temperature advection is given by the following equation:

Temperature Advection = V-"h VhT = - u-T- vfT (3-11)

Again, we approximate the partial derivatives using the gridded data available to us and
implement temperature advection at the center of the grid using the following (refer again

to Figure 33):

(Ta - Tc) (Td - Tb) (3-12)Tadvh Uavg 2Ax VaMg 2Ay

where uavg and vavg are the u and v wind components averaged over the center point o and
its two neighbors along each direction (we weight the center point twice as heavily as the
other grid points).

Wind Speed - is simply the resultant speed computed using the u and v wind
components at the surface as follows:

Uu +pe V 82 V23

Wind Speed Uurface ace) (3-13)

Vertical Wind Shear - is a measure of the magnitude of the wind shear between

high and low layers in the atmosphere. We computed wind shear as

Wind Shear = /(Uhigh - Ulow)2 -+ (Vhigh - Vlow) 2  (3-14)

where the high layer winds are averages over the top five sigma levels (approximately 375

to 100 mb) and the low layer winds are averages of the lower two sigma levels (surface to

approximately 800 mb).
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Stability Measure - is a simple measure of the temperature change with height
in the atmosphere. We computed two stability measures as follows:

Stability Measure 1 = T8o mb - Taur• (3-15)

Stability Measure 2 = T500 rb- T850 mb (3-16)

where all pressures are approximate because the temperatures are actually evaluated on
sigma coordinates which are defined relative to surface pressure.

Layer Thickness - is the geometric thickness of the layer bounded at the bottom
by pressure Pb and at the top by pressure Pt. It is a type of stability measure in the atmos-
phere. The algorithm to compute the thickness involves numerical integration of the hy-
drostatic equation. It is described in Ref. 25. We used Pb=Psurface and Pt=850 mb.

Transformed Variables

Another group of potential predictors included transformed variables. During pre-
liminary data analysis we studied scatterplots of individual predictors versus cloud
amount and residual plots which led us to try non-linear transformations of key variables,
especially relative humidity (RH). Through trial and error and analysis of previous re-
sults we settled on the following group of transformed predictors:

"* log(RH)

"* RH2

"* RH4

* vertical velocity x RH

* RH > 50%, RH > 70%, RH > 90%.

The frst three of these predictors emphasize extreme relative humidity values. In
the same way, the product of vertical velocity and relative humidity emphasizes those sit-
uations when both variables are extremely low or high. This predictor was suggested by
personnel at the TDL (Ref. 11). The same group has also found thresholded predictors use-
ful in building MOS equations using output from the Nested Grid Model. The last predic-
tors are examples of thresholded or binary variables, equal to one if the humidity is
greater than the threshold, and zero otherwise.
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Differenced Variables

The Global Spectral Model generates forecasts every twelve hours in three hour in-

crements. In some cases it may be desirable to use model output from three hours before
or after the actual valid time in the predictor pool to account for possible spin-up problems

in the model. Due to computational limitations we were not able to add data from both

before and after the valid time in our pool of potential predictors. Instead, we used 3-, 6-,
and 9-hour differences in key variables to capture the temporal component of the model.

Using time differenced predictors in the MOS equations allowed us to avoid any absolute
errors in the model forecasts (e.g., moisture values are known to be biased at high sigma

levels, Ref. 20) and instead rely on trends in meteorological variables. For example, when
making a 6-hour forecast valid at 15Z, we use the GSM forecast variables valid at 15Z and

the change in forecast variables over the 9Z to 15Z period. The difference predictors can
be used to predict changes in cloud amount from the amount at initial time. This is the
strength of our MOS approach: combining observations at initial time, forecast variables
at the valid time, and differences in model variables from initial to valid time, so as to ac-
commodate potential model biases and spin-up problems.

Reduction of the Number of Variables

If we considered all of the raw, derived, transformed, and differenced variables
mentioned above for each vertical level, our pool of potential predictors would contain over
200 variables for each grid point. Because computations involved in forward variable

selection and regression in general are so costly, we investigated the tradeoffs associated
with reducing the overall number of potential predictors.

Based on our preliminary analyses, we concluded that we could reduce the ten sig-

ma layers to averaged low, middle, and high layers with little loss of fidelity. In fact, we

found that the three-layer variables were more stable predictors of total cloud amount
than their ten individual layer counterparts. This enabled us to cut by over two-thirds the
number of column variables in the pool of potential predictors. The definition of the low,
middle, and high layers we used in this effort with respect to the ten GSM sigma layers

is shown in Figure 34.

The resulting list of potential predictors used in our final regression model develop-

ment is found in Appendix A.
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3.4 REGRESSION MODEL RESULTS

Modeling consisted of two phases: exploratory and final. In the exploratory phase

discussed in previous sections, we built up the predictor list, studied the effects of time of

day, length of forecast, and location on data availability, and defined the general modeling

process. During that phase we mainly studied three regions: RTNEPH boxes 44, 45, and

61. Most of our results from that phase were qualitative.

In the final modeling phase we chose a number of box/season/time combinations

based on availability of timely data, variety of terrain types and cloud climatologies, and

strategic importance. A base set of 59 combinations was selected for analysis. To that set

we added 12 more cases that were terrain specific; that is, they only included grid points

of a single terrain type: land or water as suggested by our cluster analysis. All 71 analysis

cases are listed in Table 3.

We defined a standard set of predictors (listed in Appendix A) and i -odeling opera-

tions including:

"* selecting the strongest predictors from the pool

"* determining regression coefficients

* computing partial correlations

"* determining the reduction in variance

"* analyzing model residuals.

From model results we then determined categorical cloud amount probabilities. Finally,

we compared the MOS results to persistence using meteorological skill scores and pre-

dicted future model performance.

Regression models were developed from data sets containing one season of data

and 225 eighth-mesh grid points (fewer for terrain-specific models) one grid point for each

of 15 x 15 half-mesh cells. (The original GSM outputs were on 17 X 17 half-mesh grids af-

ter processing at Phillips Laboratory. We used only the inner 15 x 15 cells so as to be able

to compute the horizontal gradients used in divergence, vorticity, and temperature advec-

tion computations). The four seasons were defined as follows:

Winter = (December, January, February)

Spring = fMarch, April, Mayl
Summer = (June, July, Augustj
Fall = fSeptember, October, Novemberl.
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Table 3 List of 71 Model Development Data Sets

FORECAST GSM
CASE S CASE NAME BOX SEASON TIME OF LENGTH INITIAL TERRAINDAY (Z) (HOURS) TIME (Z) TYPE

1 30/SP/3/3/12 30 SPRING 3 3 12 ALL

2 30/SP/3/6/12 30 SPRING 3 6 12 ALL

3 30/SP/3/9112 30 SPRING 3 9 12 ALL

4 30/SP/9/3/0 30 SPRING 9 3 0 ALL

5 30/SP/916/0 30 SPRING 9 6 0 ALL

6 301SP/906112 30 SPRING 9 6 12 ALL

7 30/SP/9/9112 30 SPRING 9 9 12 ALL

8 30/SPI21/3/12 30 SPRING 21 3 12 ALL

9 30/SP/2116/12 30 SPRING 21 6 12 ALL

10 30tSP/21/6/0 30 SPRING 21 6 0 ALL

11 30/SP/21/9/0 30 SPRING 21 9 0 ALL

12 30/SUI9/3/0 30 SUMMER 9 3 0 ALL

13 30/SU/9/6/0 30 SUMMER 9 6 0 ALL

14 301SU19/6/12 30 SUMMER 9 6 12 ALL

15 301SUI9/9/12 30 SUMMER 9 9 12 ALL

16 30/SU/21/3/12 30 SUMMER 21 3 12 ALL

17 30/SU/21/6/12 30 SUMMER 21 6 12 ALL

18 301SU/21/6/0 30 SUMMER 21 6 0 ALL

19 30/SU/21/9/0 30 SUMMER 21 9 0 ALL

20 30/FA/9/3/0 30 FALL 9 3 0 ALL

21 30/FA/9/6/0 30 FALL 9 6 0 ALL

22 301FA/9/6/12 30 FALL 9 6 12 ALL

23 30/FA/9/9/12 30 FALL 9 9 12 ALL

24 30/FA/21/3/12 30 FALL 21 3 12 ALL

25 30/FA/21/6/12 30 FALL 21 6 12 ALL

26 30FA/21/6/0 30 FALL 21 6 0 ALL

27 30/FA/2119/0 30 FALL 21 9 0 ALL

28 30/W1/9/3/0 30 WINTER 9 3 0 ALL

29 30/Wl/9/6/0 30 WINTER 9 6 0 ALL

30 30/WI916/12 30 WINTER 9 6 12 ALL

31 30/Wi/9/9/12 30 WINTER 9 9 12 ALL

32 30/WI/21/3/12 30 WINTER 21 3 12 ALL

33 301W1121/6/12 30 WINTER 21 6 12 ALL

34 30/W1121/6/0 30 WINTER 21 6 0 ALL

35 30/WI121/9/0 30 WINTER 21 9 0 ALL

36 44/SU/0/3/12 44 SUMMER 0 3 12 ALL

37 44/SU/0/6/12 44 SUMMER 0 6 12 ALL

38 44/SU/0/9/12 44 SUMMER 0 9 12 ALL

39 441SU/15/310 44 SUMMER 15 3 0 ALL

40 44/SU/1516/0 44 SUMMER 15 6 0 ALL
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STE OF FORECAST GSM TERRAIN
CASE# CASE NAME BOX SEASON DAY (Z) LENGTH INITIAL TYPE(HOURS) TIME (Z)

41 44/SU/15/9/0 44 SUMMER 15 9 0 ALL

42 44NWII0/3112 44 WINTER 0 3 12 ALL

43 44/WI1/016/12 44 WINTER 0 6 12 ALL

44 44/WI/0/9112 44 WINTER 0 9 12 ALL

45 44/WI/15/3/0 44 WINTER 15 3 0 ALL

46 44/WI/15/6/0 44 WINTER 15 6 0 ALL

47 44/WI/15/910 44 WINTER 15 9 0 ALL

48 61/SU/3/3/12 61 SUMMER 3 3 12 ALL

49 61/SU/316/12 61 SUMMER 3 6 12 ALL

50 61/SU/3/9/12 61 SUMMER 3 9 12 ALL

51 611SU/15/3/0 61 SUMMER 15 3 0 ALL

52 61/SU/15/6/0 61 SUMMER 15 6 0 ALL

53 61/SU/1519/0 61 SUMMER 15 9 0 ALL

54 61/WI/3/3/12 61 WINTER 3 3 12 ALL

55 61/WI/3/6/12 61 WINTER 3 6 12 ALL

56 611WI/3/9/12 61 WINTER 3 9 12 ALL

57 61/WI/15/3/0 61 WINTER 15 3 0 ALL

58 61/WI/15/6/0 61 WINTER 15 6 0 ALL

59 61/WI/15/9/0 61 WINTER 15 9 0 ALL

60 301SUI21/3112L 30 SUMMER 21 3 12 LAND

61 30/SU/21/6/OL 30 SUMMER 21 6 0 LAND

62 30/SU/2119/0L 30 SUMMER 21 9 0 LAND

63 301SU/21/3112W 30 SUMMER 21 3 12 WATER

64 30/SU121/6/0W 30 SUMMER 21 6 0 WATER

65 30/SU/21/910W 30 SUMMER 21 9 0 WATER

66 61/WI/3/3/12L 61 WINTER 3 3 12 LAND

67 61/WI/3/6/12L 61 WINTER 3 6 12 LAND

68 61/WI/3/9/12L 61 WINTER 3 9 12 LAND

69 61/WI/3/3/12W 61 WINTER 3 3 12 WATER

70 61/Wl/3/6/12W 61 WINTER 3 6 12 WATER

71 61/WI/3/9/12W 61 WINTER 3 9 12 WATER

3.4.1 Predicting Cloud Cover Fraction

Strongest Predictors

We generated regression models for all 71 cases listed in Table 3. The first step in

the process was to determine the strongest predictors in each case. The fifteen strongest
predictors, as selected by the forward stepwise regression module in the STATISTICA"'

software, are listed for each of the 71 model cases in Table 4. Brief descriptions of the vari-
ables, listed by their abbreviated names in the table, can be found in Appendix A.
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Table 4 List of Strongest Fifteen Predictors Selected Using
Forward Stepwise Regression for the 71 Development Data Sets
(Coded Variable Names Listed Here are Described in Appendix A)

I CAShhNAM I 1 3 4 5 6 7 8 9 10 11 12 13 14 16

1 30QSPrJW12 ACC&U NEPH3 ACCI43 Lim UNRH NEFH.24 NEPHO 03PIMM LAY ELIV NEPH'12 D3P D3WL ACCU LON

2 3WfSP4W12 ACOAS NEPI4S RSX LIM ACCHS NEPH24 LAT OSP ACCLA OGRtM NEPII12 THICK VYL V. bIMW

3 3OWSPI12 RWWU ACCM9 LIM NEPH9 DOP NEPI@4 ACCON TL. VI ACCI.9 ZEN"h DSVTM TAN Vii 0m

4 3DOWAIM~ ACCAS NEPtIS ftMX ACCH3 NEPHO LAY ACCL3 UM NEPH21 LON SPEED VTM OSAWId 08EV ZENITH

5 300SPANN ACOMS NEPI4S FOMX LIM ACCHS NEPH2i ACCI.6 SPEED VTL DOWL DELEv LAY Difta R~ EI1

6 30WPIAM12 ACCMS NEPI4S miu NEPH21 LAY Lu ACCHS ACCLS VTW SPEED DELEY DGVM OGUM VT1. PO

7 30WAP12 RHNMI ACCM6 NEPHO LAY WU NEPMaI ACC*46 VTL DlVI. ACCI.6 RIMS atDý SPEED DELEy AMWi

6 3015P/2141512 ACCM3 NEPH3 RHM2 ACCN3 ZENITH DSP NEPtOIS ACOLS RHL4 03RHOM VI. LON DAY TAN NEPH21

9 3OWMF~INfl2 1ACCMS AH NEPHiS DIP ACCHO ELEV AMLC4 VL ZZ NEPH21 VM ACCLA WM DEI.EV OIFtIM

10 301SPP2IjS¶C ACOMS WEPH5I N4MS ACCHO I SP ELEV NEPH21 20018 VI. YAN THIICK OTM DGA 4IMtM AHL4 VNI

11 3WSPWAkQ5. ACCW ftiMS EPtI DOP ELEV ACCOM NEPH21 Vi. ACCLS THICK WRHL DWLv DSYAi DIRtOM IEPHIiI

12 30/SuVSc ACCNO NEPI'3 LAY TM NEPMIl RHM NEPWS ACCWS DImtO VYL 080. VIA LOA RM IEPIIS

13 30S~MS ACCS NMOM TM NEPH6 ACCNS NEPH24 DGRHM Vii. NEPHO UM WI. ACCLG DELEY O6TAH SF014

14 3WSMSIOW2 ACCNWI NAHO TM NEPHO ACCNS NEPH24 DVII WEPHI ACCLO SF04 DGRtOM VTL UM VM I*M

1S 306LUOW2 NRHCC ACCM9 TM NEPI49 DVI4 20146 NEPH24 UM WI. VTL DIOled LAY Redi ACCI.3 NEPWIS

16 3015U113/2 ACCAC NEPI43 NM THICK ACCH3 03P D3AtOM NEPII21 DSVTM RIL4 Vi. EI.EV NEPHIlS VTW SHEAR

17 3OfSkM21Mfl2 ACCh* NHIN SFCP NEPHI ACCNS ML EI.EV DVI DSP NEPNE4 DIDVI MItM AHI.e DGVY ZENITH4

Is 30MMI&lIt ACCMS RHI WEPI SFCP ACICNS DVI EI.EV MVI ZENITH NEPHI8 VI. W VTI LOW DSP

19 30M52AI&O AtM ACCM9 THICK HE"H ACCIIS DWI ZENITH VI. HEM~S ELEV DVII VYL DOWN DOSNM TAM

20 3WFAN1M ACCO. WEPH3 20045 NEPH9 SF04 WRHM NEPHS NEPH21 D3MSMM Vii. TAN4 SPEED DELEV 03VI. DAY

21 3WIAAMS ACCI.S 20046 NEPHO NMM NEPHS DWIAtO EIEV ACCMS NEPHS1 TAN SF04 THICK DELEV SPEED NEPHIS

22 3OVFAGS/2 ACCLS NEPI4S ACCUS b~h4X SF04 NEPIE A20MB LOA DI N EPHS DELEV VYL TAM LON SPEED

23 13OIFASWI 2 AtOMS NEPH9 ACCIE ACCL9 UM SF04 DWNIM NEPHIlS ACONS SPEED DELEV Vii. DIVI ROMD NEPH15

24 3W02IFA2l12 ACCLI NEPIIS ACCH3 NEPH24 ZENITH RIM NEPHiS ACCL43 D3AHWU DSP AII.4 DSVI DELEV LON NEPI415

25 30IFAdalAY2 ACCL6 AFM NEPHS AC046 ZENITH NEPH2i DGRHM ARMY DIP ACCUB EI.EV DELEV LUM RHL OMVI

26 301FAM2140 ACCI.6 NEPHS NINE ACCN6 NEPHI45 LUA ZENfITH ACOMS ELEV TI. DELEV DVI. DIGtOM WEPHIS RIMI

27 301DJ2IWO ACCI.9 RHM WEPIB NEPIHi2 ZENITH LUM ACCMA WEPH18 DOVMI DELEV ACCHO ELEV AI*= DIOtOM NEPtO12

26 30N"l3W ACCU. WEPH3 ACCH3 WHOI SF04 D3IHL. NEPI424 WEPHI ELEY TM NHM DSP VM SFCP OSMI.

29 MWUMS~ ACCIS NEPH5 IRM4f ELEV NEPHO DOMd TM A00aM WEPt2e DSP DGWL WM 08LEV TYPE DING

30 3WWMM5412 ACCLS NEPHO EI.EV WEPIS 200146 DIRtLI NEPH24 Ti. WM DIRtOM DELEV TYPE SFCP LNAIS. TAM

31 301WUWW12 NEPHS RHOMI ACCI.9 LUA NEPH24 AC04B ELEV DRNIM RNI WAM. OELEV VTI. TYPE SPEED DING.

32 30VMI/Y1312 NEPIIS A0W4 NEPHS LOW 20043 ACCU. NEPH24 DI3tOM NIL DSP MM1 WAHI. NEPHIS TAM VI.

33 30AWId210f12 20015 NEPHS NIMS NEPH24 DIGld I.ON 20046 TAM VI. DSP VM WEPHIS IJELEV NII. AHI0

34 301WI21460 ACCI.6 WEP?6 NOW NEPH24 ACCH6 WM DSAWI NEPIII TI. 06TAtO VI TAM DSVT NHO RMID

35 3G40112146 ACCL9 NEPWS RMM NEPH24 WPNM DOR&a ACCMS DOSAN TI. TAM VI. NEPH15 RH7O DOP NEPI43I

36 4d1I.1W312 ACCL3 NEP143 ACCES YDOF2 AtOM ELEV DSVTH NEPH24 ACCIC VM TAM SPEED DVI. NEPW9 NEPH12

37 44/SI.01612 ACOMSG NIM WEPHS ELEV ACCHS Vii. WEPH24 DSVYI4 ACCI6 TDIIF2 TM DIM. DVI. DAY SPEED

38 "4SkUM 12 ACCMS NOW ELEV NEPWS ACCO VYI. WEPH24 DSVT) ACCI.S TOOFi DSAHIL NEPM42 TAM DY T

39 144SLVISW3 ACOLS NIMIC 200G NEPIIS SF04 VTM NEPIIB NEPH24 03VTH4 20043 UL SPEED TYPE VI DP
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40 444&WSW ACCMA 4HM NEPH6 SF04 ACC?.S NEPH24 ACOHS DOSVT 0" VIM SPEED awmm sowR IOU "PE

41 44OIO&M 14MM ACMG ACCLOS BCH NEPHO4 WMP04 DOM iTFI VTM ACCHS TYPE CPA. 0DT SPEED TAM

42 44AMIM3I2 ACCUI NEPSO ACCH3 RM2 AVOW4 TM VII NEPOSS TAM ftm7 CoP WJWt COA*t TYPE LOW4

43 44MkASI12 ACCLG ACCk% NEANS ROWS TM AHlO DUN N4EP604 Vft TAM WEPHIS UN TAM TYP 01ftM

"4 44M%"OS12 jACCU~ ROW j NEROS AVOW MI TM jR" O DIM NEPH*NE3P51444 1W! TAM vN ow"Y 060.3

45 4~1IVl01 ACCL3 PEPOH ACCKW ROM NEPHO TAM NEPHsIS TM ROW SHEAR AVCNS NEPI4I2 D3VM D3TAL NP51M9

46 4NM15ISA0 ACCLI RMOM NEPS4S ACCLIS UM TM NEP0H12 TAM TAM 01RO49 MINNW OWN~ OSTAM SPEED ACCHS

47 44MOWI5SAN ACCLO MWe NEPHS TM AVOW~ TAM NEPHIG LOU AHM2 SPEED TAM NEP#412 uld TDW) OWflh

496SIS.JI3fLV 2 ACCWG ACCI43 LAY ACCL3 1411449 NEPHiS NEPtO UNRHM COWrL TOIFI 00R142 TYPE 03TAM DOWNH WA**A

49 SIUOS12 A;CCUS LISIHM NE1144 ACCLS ACCNS NEPH15 TAM ZEPION NEPH1 rim TV, Aw Towi vM VI WI.

sC 61SLMMJ212 ACCOJ gNFH4M AVOH9 PdEPHIS NIEP#412 ACCW RHM TYPE UL DOTAbI WAh DOVWN TDIFI HEPMS oSTrAL

51 10M1iI5030 AVOW OAT ACCO3N EPt124 ACCU WM TAM VTI NEPISO UL ELEV SFCP WIATh PEPtO NEPNS

52 OIiSIWWe ACC4S IAT NEPHNO ACCMS WM VTI OJFMM U M DOLN COOL DP ASIAB NEPNO 011EV UN LA.

53 O1MYl1541 AVCWS NEPH24 LAT ACCOIO WM VTL U4MM DOWN UL NP5,99 TAM ZEPOIh LON1 0.3 COP

54; SliIOOIfl2 ACCw NEPOI NERtO LAY ACCIS VIM ACVOW ASMM VELEV WHPO UN NEPHIS VT14 TI UOWN

7;6 1OOMM/12 ACCMS NEPH21 IA? ACCrnS ACCLS MOM UN NEPM4 DELEV UN VTH SOEPNIS VI DOVI DOW

7O GlISS'2 NEPH21 AVCwS LA? ACCIS AVCON OUYM VS 011EV NEPH12 UNH VTH NEPNI5 10ON 09141 GOTAM

57 GIAlIIS0C AVOW NEPS@4 TL ACCL3 ACCN3 ROHw SEPOG lEANS DIMN CONN AS42 VIM LAT SFACH WWH

Be G*V13'J1JS ACCUS NEPH24 ROSM 06W ACCNG AVOWS PPH12 VIM 0IDVI SFCH LL DGWI 0OVIM ELEY WI

7; aimmw~SoC AVOW NEPH24 AcOID VIM NE",2 RSO.4 01wv ACCeSS m5 SPEED &"ER TI DOWI DWIm Am

SC 3005121l112 Acme NEPN43 AHL44 A0CCH3 E1EV DWN NEPH21 DOP DOROW FftA. VTN 00EAN YTI. 011EV 03VTM

Of 3"MSU~40 AVOW& ROSI WEPHS ELEV ACCNO DMN D6VM DVI NEWHUI Viii AMh 06WL VII DIP TM

02 30OSU21iff ROSS AVOW ThIC NEANS ACCeSS VI ZENTh VTI 11EV 05WM DOW DIP NEPOO4 DOVI ovirh

63 3008U01/t2W AVOWI ACCH3 PEPH3 DVN D3P 03VM um TAM VII TI 03F05 TAH 03LL. DAY RowS

04 3=01LWM210W ACOW DUW bOS ACCNS SM MUMHS WIL OSYM DAY TAM TI DOTAM 06P WI DOWI

0; 3W80U2IASW ACCAM DUN ACCeSS VrL NEPHOS MOM SM DAY MSSM TAM DIVAS4 DIP TL. lEANS LON

GO GIIVWaOf2L ACCW NEPH3 NEPH21 ftSS AVCCU AVONO OAT VIM TAL ONEANMS TI 011EV L14ASSM ION O3VM

67 Glib'WYn2L ACCW PSEPH21 ACCeSS O AT ACCLS VIM LON SEPt40 O11EV OFlM SFCH UN DOUM VI D$VI
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Figure 35 shows a histogram of those predictors that were among the fifteen stron-
gest most often over all 71 development data sets. In that figure we normalized the number
of occurrences to the total number of possible occurrences for each variable. Recall that some
predictors (e.g., wind speed) are common to all 3-, 6-, and 9-hour forecasts, whereas others
(e.g., 6-hour change in surface pressure) are unique to only one forecast length.

While Figure 35 reflects the frequency with which specific predictors appear in the
strongest fifteen, it does not contain information about whether the variables were very
strong predictors of cloud cover (occurring always in the top half of the group) or simply sup-
porting predictors (occurring in the lower half of the group of fifteen). For this reason it was
necessary to analyze this figure in conjunction with the ordered predictor lists of Table 4 to
make more specific conclusions about the meaning and utility of various predictors.

It is important to note however, that especially for those predictors that occur in
supporting roles, the absolute utility of any individual predictor cannot be ascertained by
its rank position in the top predictors, or even by its contribution to the overall reduction
in variance. This is due to the high correlation between some predictors. The forward re-
gression technique finds the set of fifteen predictors that together reduce the variance by
the greatest amount. There may be alternate sets of predictors that perform nearly as well
with different supporting predictors.

Similarly, for a different development data set we may find that the group of sup-
porting predictors changes. We performed a limited analysis in which we split a develop-
ment data set in half and found the strongest predictors from the two halves individually
and the whole data set. We found the very strongest predictors remained constant across
all three data sets. Some of the remaining variables changes rank position or dropped out

altogether to be replaced by others.

Keeping these caveats in mind, and realizing that our conclusions are based only
on one year of data, a number of interesting observations drawn from Figure 35 and
Table 4 along with results from our exploratory analysis phase are grouped loosely by pre-
dictor type and listed below:

Advected Cloud Cover Terms

* The advected cloud cover terms (ACCL3, ACCM3, ACCH3, ACCL6, etc.) were
very strong predictors (frequently in the strongest five) for all boxes, times of
day, seasons, and forecast lengths we studied.

* The advection terms had their greatest influence in 6-hour forecasts, especially
in box 30.
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* The high-layer advection terms did not perform as strongly as low- and middle-
layer advection in all box regions. That is, although they were frequently in the
group of the strongest predictors, they often played supporting roles.

Persisted Cloud Cover Amount

* The cloud cover at initial time (i.e., the persistence forecast) was, as expected,
a strong predictor along with the advection terms in boxes 30 and 44.

• The cloud cover at initial time was rarely among the very strongest predictors
for box 61, although it frequently turned up in a supporting role.

• The cloud cover at initial time generally dropped in significance with forecast
length for any given box/season/time combination.

• The 24-hour persisted cloud cover turned up more often in the very strongest
predictors for box 61 than in boxes 30 and 44. However, 24-hour persistence
occurred more often overall in box 44.

"• Cloud cover 21 hours before valid time was a frequent contributor in box 30,
probably representing 24-hour persistence that was three hours old at 21
hours before forecast valid time.

"* In box 61, the 24-hour persisted cloud cover was more prevalent at 15Z
(approximately 10 a.m. local time) than at 3Z (approximately 10 p.m.).

Relative Humidity Variables

• Humidity terms in general were very significant predictors.

• Maximum layer relative humidity occurred frequently in the strongest fifteen
for all box/season/time combinations.

• Mid-level relative humidity and transformations of that variable (ln(RH),
RH2, and RH4) were also present frequently.

• Binary relative humidity variables were also in the strongest predictors for
box 30.

• 3-, 6-, and 9-hour humidity change variables occurred with some regularity in
box 30.

Other Variables

"• Change in elevation along the local wind direction was a common predictor.

"• Latitude was an important predictor for box 61, but less so for boxes 30 and 44.

"• Mid-level u wind and low-level v wind components were common for box 30.
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* 3-, 6-, and 9-hour changes in surface pressure were significant predictors in
box 30.

* Low-level vorticity was a commonly-selected predictor across all three regions.

* Mid-level temperature occurred with some frequency in box 44.

• Mid- and high-level temperature advection turned up frequently in box 44.

* Vertical velocity was a stronger predictor in box 61 than in boxes 30 or 44.

* In box 61, the vertical velocity was more prevalent at 15Z (approximately
10 a.m. local time) than at 3Z (approximately 10 p.m.).

* Elevation and stability parameters occurred more often in the strongest fifteen
predictors for box 44 at OZ (approximately 6 p.m.) than at 15Z (approximately
9 a.m.), characteristic of afternoon heating and lifting over elevated terrain.

The strength and ubiquitousness of the simple cloud cover advection predictors
surprised us. There were two possibilities for their predictive strength: 1) they repre-

sented regional average cloud cover amounts (these variables were averaged to half-mesh
resolution) or 2) they really represented advection of regional cloud systems. To determine
whether their predictive effects were due to advection or to area averaging we substituted
winds rotated by 1800 in the computations. The result was that the advection terms
dropped out dramatically from the strongest predictors. Not only did this imply that these
predictors represented advection, but it also reflected the accuracy of the GSM winds.

The last twelve cases in Table 4 correspond to models developed for specific terrain
types (i.e., land or water). The strongest predictors for these terrain-specific cases were
distinct from those developed for the same regions and times including all terrain types.
This conclusion supports our findings during the clustering task: grid points of similar
terrain type which grouped tightly in principal component space represented unique mod-
el development cases with unique cloud distribution characteristics. (We did not develop
models for coastal grid points because there were not enough data points to support mean-

ingful results.)

Many of the same observations made previously and discussed above for the 59 all-
terrain-type cases are also true for these twelve terrain-specific cases (e.g., the overall
strength of the advection and persistence terms). However, a few observations specific to
these cases can also be made:

"* Box 61 land/water cases differed less than box 30 land/water cases from their
all-terrain-type counterparts.

"* We saw a greater dependence on wind and divergence predictors in the water
model than in the land model for all forecast lengths in box 30/summer.
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"* Box 61/winter showed a similar emphasis on wind-derived predictors.

"* Cloud cover at the initial time was a stronger predictor over land than over wa-
ter in box 30/summer.

"* Temperature and temperature advection terms occurred in all three water
cases in box 30/summer.

Regression Coefficients

After determining the strongest fifteen predictors for each data set, we determined

the model coefficients (or weights) using the standard linear regression technique offered
in STATISTICA'. In Tables 5 through 9 we show the raw regression weights (B) and the
standardized regression weights (BSTD) for 5 of the 71 models (cases 24, 25, 27, 42, and
52 in Table 3). We selected these five cases to highlight in this results section because they

represented a good cross section of the data. Three of the cases are based on one box/sea-
son/time combination, but have different forecast lengths (3, 6, and 9 hours). One can de-
tect the effects of forecast length on model development by comparing their results. The
other two cases are from different boxes, seasons, and times.

The magnitude of the raw B weights is not a measure of the relative strength of the
predictors, but rather a reflection of the predictors' units and magnitude. The standard-

ized regression weights are those we would have obtained had we first standardized all
the predictors to mean 0 and standard deviation 1. Thus, the standardized values give us

a measure of the relative contribution of each predictor to the overall cloud amount predic-
tion equation. Positive weights reflect the positive partial correlations between the pre-
dictor and the predictand; e.g., mid-level relative humidity (RHM) and cloud cover in
Table 7. Negative weights imply a negative relationship; e.g., 3-hour change in surface
pressure (D3P) and cloud cover in Table 5.
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Table 5 Regression Results for Case #24 (Box 30, Fall, 21Z, 3-Hour
Forecast) Showing Top 15 Predictors, Regression Weights

(Raw and Standardized), and Partial Correlations
PARTIAL

VARIABLE NAME B BSTD PORTIAL
CORRELATION

ACCL3 .171 .140 7.62e-2

NEPH3 .307 .300 .252

ACCH3 .151 .123 7.93e-2

NEPH24 4.26e-2 4.26e-2 5.65e-2

ZENITH -. 161 -5.29e-2 -8.10e-2

RHM 3.48e-2 1.71e-2 1.61 e-2

NEPH6 6.08e-2 5.61e-2 5.57e-2

ACCM3 .157 .128 5.82e-2

D3RHM .331 5.00e-2 6.85e-2

D3P -2.04e-4 -4.01e-2 -5.77e-2

RHL4 .104 5.02e-2 -5.39e-2

D3VL -1.19e-2 -3.24e-2 -5.08e-2

DELEV 4.36 2.70e-2 4.30e-2

LON 1.27e-3 2.75e-2 4.19e-2

NEPH15 3.62e-2 3.59e-2 4.20e-2
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Table 6 Regression Results for Case #25 (Box 30, Fail, 21Z, 6-Hour
Forecast) Showing Top 15 Predictors, Regression Weights

(Raw and Standardized), and Partial Correlations

VARIABLE NAME B BSTD PARTIAL

CORRELATION

ACCL6 .248 .193 .127

RHM 8.74e-2 4.29e-2 3.16e-2

NEPH6 .210 .194 .172

ACCH6 .120 9.25e-2 7.31e-2

ZENITH -. 154 -4.98e-2 -6.90e--2

NEPH21 7.05e-2 7.06e-2 8.60e-2

D6RHM .305 7,68e-2 8.54e-2

RH70 6.21e-2 7.05e-2 6.56e-2

D6P -1.44e-4 -5.24e-2 -6.52e-2

ACCM6 6.17 .100 6.09e-2

ELEV 4.1Oe-5 4.11e-2 5.71e-2

DELEV 6.17 3.81 e-2 5.49e-2

UM -2.57e--3 -5.38e-2 -6.74e-2

RHL4 .131 6.38e-2 5.97e-2

D6VL -8.23e-3 -3.87e-2 -5.39e-2
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Table 7 Regression Results for Case #27 (Box 30, Fall, 21Z, 9-Hour
Forecast) Showing Top 15 Predictors, Regression Weights

(Raw and Standardized), and Partial Correlations
PARTIAL

VARIABLE NAME B BSTD PARREL
CORRELATION

ACCL9 .229 .176 .133

RHM .179 9.54e-2 7.27e-2

NEPH9 .150 .137 9.39e-2

NEPH21 6.50e-2 6.51e-2 6.70e-2

ZENITH -. 201 -6.46e-2 -8.68e-2

UM -4.04e-3 -8.71 e-2 -. 107

ACCM9 .141 .108 7.61e-2

NEPH18 5.91e-2 5.97e-2 5.53e-2

D9VTL 1.63e3 4.59e-2 5.82e-2

DELEV 6.30 3.89e-2 5.39e-2

ACCH9 8.73e-2 6.67e-2 6.00e-2

ELEV 5.01e--5 3.91e-2 5.24e-2

RH90 5.62e-2 5.88e-2 5.99e-2

D9RHM .145 5.10e-2 5.83e--2

NEPH12 6.81 e-2 6.44e-2 4.65e-2
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Table 8 Regression Results for Case #42 (Box 44, Winter, OZ, 3-Hour
Forecast) Showing Top 15 Predictors, Regression Weights

(Raw and Standardized), and Partial Correlations

PARTIAL
VARIABLE NAME B BSTD CORTIOL

CORRELATION

ACCL3 .288 .238 .167

NEPH3 .341 .336 .330

ACCH3 .101 8.46e-2 6.67e-2

RHM2 6.47e-2 3.81 e-2 4.24e-2

ACCM3 .111 9.26e-2 5.65e-2

TM 2.90e-2 4.99e-2 7.22e-2

VTL 6.54e+2 3.40e-2 5.04e-2

NEPH18 2.87e-2 3.03e-2 3.91 e-2

TAH 1.37e+2 3.97e-2 5.72e-2

RH70 3.38e-2 3.98e-2 4.93e-2

D3P -1.00e-2 -3.34e-2 -4.80e-2

NEPH24 3.27e-2 3.31 e-2 4.37e-2

D3RHL .187 2.90e-2 4.19e-2

TYPE 1.43e-2 1.92e-2 3.00e-2

LON -8.00e-2 -1.84e-2 -2.80e-2
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Table 9 Regression Results for Case #52 (Box 61, Summer, 15Z,
6-Hour Forecast) Showing Top 15 Predictors, Regression Weights

(Raw and Standardized), and Partial Correlations
PARTIAL

VARIABLE NAME B BSTD PARTIAL
CORRELATION

ACCH6 .149 .133 9.25e-2

LAT -2.51e-2 -. 233 -. 158

NEPH24 9.08e--2 8.97e-2 9.19e-2

ACCM6 .121 .107 7.22e-2

WM 9.75e3 .159 .118

VTL 2.27e3 6.66e-2 6.57e-2

LNRHM 4.61 e-2 4.19e-2 3.64e-2

D6WH -9.95e3 -6.44e-2 -6.50e-2

D6UL 1.17e-2 5.06e-2 5.05e-2

D6P -1.49e-4 -3.85e-2 -4.03e-2

RHAB 9.84e-2 3.70e-2 3.44e-2

NEPH6 3.80e-2 3.81e-2 3.22e-2

DELEV 1.75 2.86e-2 3.17e-2

VM 6.45e-3 3.20e-2 3.21e-2

UL 3.30e-3 3.70e-2 2.61 e-2
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Partial Correlations

One way to analyze the results of regression modeling is to look at partial correla-

tions. Partial correlations are related to the contribution of each individual independent

variable to the prediction of the dependent variable (cloud cover) after predictability

derived from previously selected independent variables has been accounted for. The

squared partial correlation is a measure of that part of the residual variance accounted

for by each variable.

The partial correlations for the five sample cases are listed along with the regres-

sion weights in Tables 5 through 9. Note that in the tables, variables are ordered according

to their order of selection from the original set of approximately 80 predictors. Within the

fifteen predictors in each table, selection order would have been from the largest to small-

est (magnitude) partial correlation.

Reduction in Variance

Another way to study the results of regression modeling is to look at the reduction

in variance due to the individual predictors and due to the complete regression model. We

can evaluate the MOS approach to cloud amount prediction by comparing the reduction

in variance, R2 , from the MOS equations to that obtained using only the persisted cloud

cover amount. That comparison (organized into three tables by box number), for the 71

cases we modeled, is shown in Tables 10a through 10c.
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Table 10a Comparison of the Reduction in Variance (R2 ) Due to
MOS and Persistence for Box 30 Cases - Values Marked With "L"

and "W" Correspond to Land and Water Cases, Respectively

VALID FORECAST SPRING SUMMER FALL WINTER
TIME LENGTH

(Z) (Hours) MOS Persist MOS Persist MOS Persist MOS Persist

3 3 .5370 .3569

3 6 .4909 .2761

3 9 .4487 .2012

9 3 .5831 .4638 .6222 .4946 .6430 .5336 .5672 .4381

9 6 .4868 .2982 .5434 .3494 .5538 .3649 .4831 .3052

9 6 .5005 .2982 .5614 .3494 .5563 .3649 .4780 .3052

9 9 .4468 .1761 .5221 .2489 .5043 .2534 .4199 .2086

21 3 .5230 .4048 .5510 .4572 .6096 .5010 .5385 .4295

21 6 .4132 .2293 .4448 .2776 .5283 .3484 .4300 .2651

21 6 .4013 .2293 .4297 .2776 .5194 .3484 .4212 .2651

21 9 .3661 .1627 .4002 .2232 .4921 .2938 .4063 .2092

21 3 .5 3 7 8 L .4315L

21 6 .4286L .2587L

21 9 .3 9 16 L .1972L

21 3 .5311w .3831w

21 6 .3 8 29 w .1519w

21 9 .3 80 8 w .1347w

Table 10b Comparison of the Reduction in Variance (R2) Due to
MOS and Persistence for Box 44 Cases

VALID FORECAST SPRING SUMMER FALL WINTER
TIME LENGTH

(Z) (Hours) MOS Persist MOS Persist MOS Persist MOS Persist

0 3 .5062 .3519 .6124 .4784

0 6 .4181 .1910 .5340 .2300

0 9 .3727 .1109 .4636 .1890

15 3 .5378 .3513 .5258 .3785

15 6 .4250 .1760 .4448 .2192

15 9 .3938 .1288 .4247 .1954
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Table 10c Comparison of the Reduction in Variance (R2) Due to
MOS and Persistence for Box 61 Cases - Values Marked With "L"

and "W" Correspond to Land and Water Cases, Respectively

VALID FORECAST SPRING SUMMER FALL WINTER
TIME LENGTH

(Z) (Hours) MOS Persist MOS Persist MOS Persist MOS Persist

3 3 .4168 .2549 .5594 .4186

3 6 .4378 .0688 .4055 .1761

3 9 .1677 .0518 .3843 .1426

3 3 .5 3 2 4 L .4 0 1 8 L

3 6 .3 5 2 5 L .1807 L

3 9 .3 3 7 7 L .16 2 8 L

3 3 .5693W .3796w

3 6 .5030w .1472w

3 9 .5263w .1050w

15 3 .3387 .2106 .3979 .2684

15 6 .1940 .0721 .2930 .1693

15 9 .1830 .0625 .2884 .1619

From the entire 71 cases we were able to draw a few conclusions.

* The reduction in variance due to MOS or persistence decreases with increasing
forecast length. That is, R2 for a 3-hour forecast is greater than R2 for a 6-hour
forecast which is in turn greater than R2 for a 9-hour forecast for a given box,
season, and time.

0 The percentage increase in the reduction of variance using the MOS approach
over that using persistence varied substantially from one region and season to
the next. The greatest increases were found in box 61 summer 3Z and winter 3Z
(most notable was the box 61, winter, 3Z, 9-hour forecast for water grid points).

0 R2 due to persistence was higher in the winter than the summer in boxes 44 and
61. Its highest values were in box 30, fall. Lowest values in box 61, summer.

* The most variability in R2 values was found in the box 61 cases.

In all of these cases, the MOS approach improved upon persistence because it used

more information. Each additional variable that is used in the regression equation adds

to the overall reduction in variance, though each successive predictor adds less and less

to the overall reduction, in general.

In addition to studying the overall reduction in variance due to all fifteen predictors

in each case we also studied the incremental changes in R2 due to individual predictors.
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Table 111 shows the cumulative reduction in variance for two sample cases (numbers 42
and 52) as successive variables were added to the regression equations. From the results
presented in Table 11 it is clear that the bulk of the variance reduction comes from the first
few predictors. In terms of variance reduction, our decision to retain fifteen predictors in
the models was very conservative.

Table 11 Incremental Changes to R2 for Cases #42 (Box 44, Winter,

OZ, 3-Hour Forecast) and #52 (Box 61, Summer, 15Z, 6-Hour Forecast)

Case#42 Box 44 Case#52 Box 61

Variable Cumulative R2  Variable Cumulative R2

ACCL3 .5187788 ACCH6 .1166509

NEPH3 .5781473 LAT .1387272

ACCH3 .5920656 NEPH24 .1539613

RHM2 .5962372 ACCM6 .1637530

TM .5979326 WM .1706838

TAH .5996365 VTL .1780713

NEPH24 .6011909 LNRHM .1818255

RH70 .6025454 D6WH .1851151

ACCM3 .6037927 D6UL .1853130

D3P .6048484 D6P .1890684

VTL .6057851 RHAB .1901213

D3RHL .6064843 NEPH6 .1910302

NEPH18 .6071277 DELEV .1918519

TYPE .6073927 VM .1926227

LON .6076998 UL .1931708

Residual Analysis

A final step in our analysis was to examine the residuals. Linear regression as-

sumes linear relationships between each of the independent variables and the predictand.

1 The R2 values included in Tables 10a through 10c correspond to the reduction in variance
due to the strongest fifteen predictors of the pool of approximately 80 predictors used
during the forward regression step. The R2 values reported in Table 11 were determined
during the regression modeling step when only the strongest fifteen predictors were used.
Slight discrepancies between the numbers are due to the influence of the remaining
predictors not used in the final regression modeling step.
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Linear regression also assumes that the residual population density is unimodal and sym-
metric around zero. By analyzing a "normal plot of the residuals" (one of the options avail-
able through STATISTICA') we were able to verify whether our model residuals were
normal. Testing for normality is a stronger test than required by the assumptions of linear
regression, but it can point to potential problems in the data.

A normal probability plot of the residuals is generated by plotting the actual residu-
als on the x axis and the z-values (standardized assuming a normal distribution) of the
rank-ordered residuals on the y axis. If the residuals follow a normal distribution, the data
lie along a straight line (the "normal" line). Gross deviations from normality show up as
deviations from the normal line. In certain cases some non-linearities can be removed by
transforming the data. Normal plots of the residuals for the five sample cases mentioned
above are included in Figures 36 through 40.

In four of the cases that we looked at, the data did not show any large deviations

from the ideal normal line. Significant deviations were found in box 61, shown in Fig-
ure 40. The most negative residual points that fall well below the normal line indicate a
heavy-tailed distribution. The flattening of the curve around residual values between -0.5
and 0 indicates a tendency toward a multi-modal density function. A histogram of the re-
siduals for the box 61 case (see Figure 41) clearly supports both of those indications. In
contrast, Figure 42 shows a histogram of the model residuals from the case presented in
Figure 38 that fell nicely along the normal line. In this case, the residual distribution

clearly satisfies the zero mean and unimodal requirements assumed in linear regression.

3.4.2 Predicting Probabilities of Cloud Cover Categories

An introduction to the process of predicting probability of cloud cover categories

was given in Section 3.1. We used the actual error distributions resulting from the regres-
sion modeling to determine those probabilities. First we divided the predicted cloud
amounts into 11 bins: 0-4%, 5-14%,... , 85-94%, 95-100%. Then we generated histo-
grams of the errors (binned in 0.1 intervals) by forecast cloud category. In general, these

residuals have values between-1 and + 1. For any given cloud amount estimate, ^, howev-

er, the residual values can range from a low of - y to a high of 1-^. Due to the bounded
nature of cloud cover observations, the error histograms frequently followed U-, J-, or L-
shaped distributions. Figure 43 shows the residual distributions for each of the forecast
categories for case #27 (box 30/Fall/21Z/9-hour forecast). A histogram of the entire residu-
al data set for this case was shown in Figure 42.
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As shown in Section 3.1, the probability that the observed cloud cover will be less

than or equal to a threshold value, c, is given by

Pr{Y5c I Y)l - Pr{Esc-Y I Y^1 (3-17)
A

where Y is the observed cloud cover, Y is the estimated cloud cover using the MOS equa-

tions, and E is the error. For example, to find the probability that the observed cloud cover
will be 5 50% given that the predicted cloud amount is 80%, we determined the cumula-

tive density (i.e., probability) below -0.3 (i.e., 0.5-0.8) in the error histogram for cloud cov-

er forecasts in the range 75-84%. The probability of a single cloud cover category (i.e., that

the observed cloud cover is between two thresholds) is simply the difference between the
probabilities computed for each of the thresholds individually.

These calculations do not make any assumptions about the behavior of the errors.

There is some approximation involved, however, due to the finite widths of the bins used

to categorize cloud cover forecasts and the errors themselves.

We generated MOS-based probabilities of cloud cover categories at 10% intervals

for all 71 cases listed in Table 3. Figures 44 through 48 show the results for the five sample

cases discussed previously.

3.4.3 Modeling with the REEP Methodology

In Section 3.1 we introduced the regression estimation of event probabilities meth-

odology to estimate cloud cover categories. In this section we discuss how we implemented
the REEP approach, show results of a sample case (box 44/winter/3Z/3-hour forecast), and

discuss why we decided to implement an alternate methodology to predict both total cloud

cover amount and probability of cloud cover categories.

First, we transformed the response variable, total cloud cover (cc), to 6 categorical

response variables defined in consultation with Phillips Laboratory personnel as

Category 1: cc = 0%
Category 2: 0< cc 5 25%
Category 3: 25< cc < 50%
Category 4: 50 < cc < 75%
Category 5: 75 < cc < 100%
Category 6: cc = 100%.

The result was a binary response vector for each observation containing 5 zeroes and

1 one.
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The REEP methodology uses a common predictor set to build a regression equation

for each category; this ensures that the probabilities sum to one. Therefore, the next step
was to determine a set of predictors common to all of our six categories. We found that this

step was somewhat subjective. We used the forward stepwise regression module to select

the strongest predictors for each category individually. Then we made a histogram of the

strongest predictors across all six categories and selected those variables that occurred

most frequently. When two or more variables occurred with the same frequency, we se-

lected that one which was the "stronger" predictor (i.e., occurred closer to the top of the list

of predictors). Table 12 contains a list of the fifteen strongest predictors for each of the six

categories as selected using forward regression. Notice that in one of the categories only

8 predictors were selected (i.e., only those eight were found to be significant using the F

test provided in the STATISTICA' model software). The last column contains those vari-
ables we chose for the common predictor set in the sample case.

Next, we used REEP to develop six models, one for each of the six categories, using the
fifteen common predictors. The regression coefficients for each category in the sample case

are listed in Table 13 (we list both raw and standardized weights as in the previous section).

Table 12 List of Strongest Predictors Selected for Each of the Six
Cloud Cover Categories and the Common Predictor Set Used in the

REEP Case (Box 44, Winter, 3Z, 3-Hour Forecast)

COMMON
NUMBER CATEGORY CATEGORY CATEGORY CATEGORY CATEGORY CATEGORY SET OF

1 2 3 4 5 8 PREDICTORS

1 ACCL3 TDIF1 LAT NEPH3 ACCL3 NEPH3 NEPH3

2 NEPH3 VTL DAY ELEV ELEV ACCL3 ACCL3

3 RHM RH50 RHL2 MCC3 LAT RHM2 LON

4 NEPH21 RHL2 NEPH3 UL LON ZENITH RHL2

5 TL ZENITH TYPE LNRHM DAY NEPH21 ELEV

6 ACCH3 WH LUL TDIF1 SFCP TN TYPE

7 TYPE LNRHM D3VL TYPE DELEV WH SFCP

8 ELEV RHM2 SFCP DELEV TAH TAH RH50

9 RH50 LON SFCP D3WL RHM TDIF1

10 D3VTH WRHM LON NEPH3 ACCM3 ZENITH

11 TAM RH90 RH50 NEPH6 NEPH9 NEPH21

12 LON DVM RHL2 D3RHL RHL2 UL

13 TDIF1 TM ACCL3 D3VTL LAT RHM2

14 D3WL NEPH18 RHL TAL NEPH15 RHM

15 D3RHM VTL RHAB TM TAM LNRHM
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The equations predict probabilities of cloud cover categories, but unlike true proba-

bilities, these individual values are not required to be between zero and one. For example,
the REEP model produces the following probability estimates at a single grid point on the
first day of the sample case (Dec. 1, box 44):

Category 1: -0.120664
Category 2: 0.100010
Category 3: 0.013345
Category 4: 0.221180
Category 5: 0.054954
Category 6: 0.731176.

The probabilities sum to one as required, but are not bounded by 0 and 1 as a result

of using a non-bounded linear regression model. The predicted total cloud amount can be
determined from the probabilities using a prescribed selection criterion such as the most
probable category or the median category. In the example above, either of these criteria
would result in a cloud cover estimate of category 6; 100%.

Besides the two disadvantages described in Section 3.1,

1. high computational cost to determine a common predictor set for all six categorical
response variables

2. probabilities outside the range [0,1],

our trial test showed that the data would not support predicting middle (partly-cloudy)
categories. This is evident when looking at the reduction in variance, R2, for the six cloud
cover categories shown in Table 14. The reduction in variance using the REEP approach
is relatively high for the two outer (clear and overcast) categories and very low for inter-
mediate categories. There are very few data in these categories and thus little to support
model development.

Table 14 Results of REEP Case Showing Reduction in Variance (R2)
for the Six Categorical Cloud Cover Regression Models. Note the

Low Values for the Four Middle Categories

CATEGORY TOTAL REDUCTION IN VARIANCE (R2)
1 .3858
2 .0148

3 .0064
4 .0417

5 .0170
6 .3236
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3.5 ESTIMATING CURRENT AND FUTURE MODEL PERFORMANCE

How does the MOS approach compare to current technology? How will the equa-

tions developed under this effort perform in the future with independent weather data?

This section seeks to answer both of those questions.

First, we compare the MOS approach to persistence. This is not an arbitrary refer-

ence point. Persistence is, in general, a good predictor of cloud cover and is relied on heavi-
ly in certain parts of the world as a forecasting tool. For example, the TRONEW and

HRCP models both use a type of persistence to model cloud cover. Second, we estimate

future performance using the jackknife technique which subsamples the model develop-

ment data set, develops independent models for each subset, then assesses performance
variability when each model is applied to data not used in its development. Finally, we

validate the cloud cover category forecasts by developing a model based on a subset of the

development data set and comparing those model results to the results computed by ap-
plying the same model to the remainder of the data.

3.5.1 Comparison of MOS Approach to Persistence

To answer the question "How does the MOS approach compare to persistence?" one

can use any one of a number of statistical performance statistics. These include: the F sta-

tistic for significance of the regression, the residual mean square, the coefficient of deter-
mination, the total squared error, etc. To compare the two forecast approaches then, one

compares performance statistics. We chose to use performance statistics more familiar to

the weather/forecasting community than those listed above to facilitate comparison with
other forecast models.

We selected, in conjunction with Phillips Laboratory personnel, three performance

statistics: the Brier score, the 20/20 score, and sharpness. Sharpness is not strictly a per-

formance statistic (i.e., it is not a measure of the bivariate forecast-observation distribu-

tion), rather it is a measure of a single cloud cover distribution (e.g., of forecast data),

which can be compared to other distributions (e.g., of observed data). That is, sharpness

is a measure of the forecast and observed marginal distributions.

We begin our discussion with a description of the 21 x 21 bin contingency tables

used to contain the forecast and observed data from which we compute the performance
measures.
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The Contingency Table

A contingency table is simply a two-dimensional histogram with observed cloud

cover along one axis and forecast cloud cover (generated by MOS or persistence) along the
other axis. We used a standard binning convention that assigns cloud cover (cc) to 21 in-
crements as follows:

bin 1: cc < 2.5%

bin 2: 2.5% f cc < 7.5%

bin 3: 7.5% r cc < 12.5%

bin 19: 87.5% -r cc < 92.5%

bin 20: 92.5% 5 cc < 97.5%

bin 21: cc -a 97.5%.

The resulting contingency table has 21 x 21 elements (or cells). A schematic of a

21 x 21 contingency table is provided in Figure 49. For each of the 71 cases we analyzed,
we built contingency tables containing one season of data (approximately 90 days) for 225

eighth-mesh grid points (15 x 15 points), a maximum of approximately 20,250 counts (box
61 cases had fewer points because a portion of the box contains "off world" points, see Fig-
ure 3). The total number of counts in the table is denoted by N. In most cases, N was much

less than the maximum after accounting for missing and "old" cloud cover data points. The
horizontal (i) axis of the table in Figure 49 corresponds to the observed cloud cover. The
vertical (Q) axis of the table corresponds to the forecast cloud cover. For any (i, j) cell, the
number of counts in the cell is denoted by nij.

The table is filled one count at a time by determining the cell that corresponds to

the forecast value along the row axis and observed cloud cover along the column axis. If
the forecast is perfect at every point over the entire season, all of the entries in the contin-
gency table will lie along the diagonal where forecast cloud cover is equal to observed
cloud cover.

The Brier score, 20/20 score, and sharpness are measures of how the counts are dis-

tributed throughout the contingency table. They are described below.
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The Brier Score

The Brier score (Ref. 3), measures the mean squared difference between the fore-

cast (F) and observed (0) cloud cover amounts (each ranges from 0.0 to 1.0) from the
21 x 21 contingency table. The Brier score, SBrier is computed by summing over all data
points in a season as follows:

21 21
5 Brier = N nij(Fj _ Oi)2. (3-18)

j=l i=l

This score is particularly sensitive to counts in the extreme off-diagonal cells due to the
quadratic term. The Brier score ranges from a perfect (minimum) value of zero, corre-
sponding to all data points lying along the diagonal, to a maximum of one, corresponding
to all data points lying in the extreme bins.

We computed Brier scores for the MOS-based forecast and the persistence forecast

for each of the model cases. Since the Brier score measures mean squared error and linear
least squares regression minimizes squared error, we expected that the MOS-based fore-
casts would perform well by this metric. Indeed, MOS outperformed persistence in all of the
71 cases. The scores are listed in Table 15. Figures 50 through 52 show bar graphs of the
Brier scores for each of the RTNEPH boxes that we studied: 30, 44, and 61, respectively.

The cyclic behavior evident in Figures 50 through 52 is caused by ordering the mod-
el cases by forecast length (refer to Table 3). The cases are listed in order of 3-, 6- (some
cases have two 6-hour forecasts), and 9-hour forecasts. By looking at those cases in Box
30 for which we generated two 6-hour forecasts (one each for the OZ and 12Z initialized
GSM data), we see that there is no evidence to suggest that one initialization time is in-
herently better than another. This implies that the MOS equations compensated for any
model spin-up problems that may have existed in the GSM.

If we explicitly average all the forecasts of a given length from one box and compare
the MOS-based and persistence-based average scores for differing forecast lengths (see
Figure 53), it is clear that Brier scores increase with increasing forecast length. That is,
SBrier for a 9-hour forecast is greater than SBrier for a 6-hour forecast which is greater than
SBrier for a 3-hour forecast (for both persistence and MOS). This implies the obvious, that
shorter forecasts are more skillful (i.e., have less error) than longer forecasts.
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Table 15 Brier Scores, 20/20 Scores, and Sharpness for the 71 Model
Cases Introduced in Table 3

CASE BRIER BRIER 20/20 20120 SHARPNESS SHARPNESS SHARPNESS

NAME N MOS PERSISTED MOS PERSISTED MOS PERSISTED OBSERVED

1 30/SP/3/3/12 15596 0.0942 0.1684 0.5651 0.6238 0.4877 0.8007 0.8222

2 30/SP/3/6/12 14093 0.1017 0.1865 0.5365 0.5911 0.4632 0.7925 0.8251

3 30/SP/3/9/12 12604 0.1092 0.2011 0-4821 0.5346 0.4084 0.7111 0.8294

4 30/SP/9/3/0 15347 0.0679 0.1115 0.6767 0.6644 0.5499 0.7977 0.7076

5 30/SP/9/6/0 13779 0.0833 0.1566 0.5956 0.5852 0.4426 0.8222 0.7037

6 30/SP/916112 13378 0.0839 0.1566 0.6008 0.5846 0.4531 0.8201 0.7031

7 30/SP/919112 11842 0.0932 0.2200 0.5285 0.5016 0.3653 0.8035 0.7026

8 30/SP/21/3/12 16139 0.0909 0.1311 0.5867 0.6201 0.4988 0.7030 0.7896

9 30/SP/21/6/12 14572 0.1112 0.1835 0.4677 0.5149 0.3627 0.6330 0.7929

10 30/SP/21/6/0 15013 0.1143 0.1838 0.4635 0.5129 0.3602 0.6311 0.7956

11 301SP/211910 13367 0.1216 0.2090 0.4286 0.4828 0.3221 0.6301 0.7991

12 30/SU/9/3/0 14926 0.0589 0.1001 0.7129 0.6733 0.5794 0.8062 0.7028

13 30/SU/9/6/0 13232 0.0714 0.1484 0.6354 0.5859 0.4825 0.8246 0.6913

14 30/SU/9/6/12 13274 0.0712 0.1464 0.6418 0.5887 0.4925 0.8251 0.6927

15 30/SU/9/9112 11480 0.0777 0.1801 0.5962 0.5374 0.4280 0.7992 0.6855

16 30/SU/21/3/12 16283 0.0723 0.1069 0.6549 0.6420 0.5637 0.6908 0.7835

17 30/SU/21/6/12 14448 0.0915 0.1588 0.5550 0.5263 0.4519 0.6071 0.7798

18 30/SU/21/6/0 14687 0.0939 0.1583 0.5431 0.5293 0.4424 0.6086 0.7809

19 30/SU/21/9/0 12860 0.1018 0.1808 0.5098 0.4932 0.4061 0.5953 0.7792

20 30/FAJ9/3/0 15033 0.0620 0.0980 0.7131 0.7098 0.6100 0.8104 0.7560

21 30/FA/9/6/0 13226 0.0777 0.1401 0.6299 0.6373 0.5305 0.8480 0.7583

22 30/FA/916/12 13428 0.0785 0.1409 0.6302 0.6335 0.5308 0.8474 0.7569

23 30/FA/9/9/12 11705 0.0884 0.1901 0.5742 0.5800 0.4556 0.8421 0.7586

24 30/FA/21/3/12 16119 0.0745 0.1075 0.6739 0.6999 0.6088 0.7864 0.8200

25 30/FA/21/6/12 14349 0.0918 0.1438 0.5881 0.6037 0.5144 0.7051 0.8260

26 30/FA/21/6/0 14375 0.0937 0.1439 0.5797 0.6061 0.5087 0.7082 0.8269

27 30/FA/21/9/0 12556 0.0999 0.1591 0.5530 0.5804 0.4875 0.6984 0.8327

28 30/WI/9/3/0 14110 0.0741 0.1163 0.6698 0.7055 0.5972 0.8327 0.7996

29 30/WI/9/160 13759 0.0900 0.1568 0.5826 0.6429 0.4935 0.8592 0.7982

30 30/WI/916/12 12973 0.0929 0.1565 0.5813 0.6457 0.5044 0.8632 0.8011

31 30/WI/9/9/12 11269 0.104, 0.2038 0.5027 0.5920 0.4080 0.8562 0.8016

32 30/WI/21/3/12 15025 0.0921 0.1341 0.6045 0.6815 0.5504 0.8152 0.8384

33 30NWI/2116112 13293 0.1138 0.1758 0.4970 0.5946 0.4373 0.7560 0.8450

34 30/WI/21/6/0 1340•3 0.1157 0.1765 0.4932 0.5956 0.4309 0.7571 0.8451

35 30/WI/21/9/0 13580 0.1216 0.1949 0.4590 0.5682 0.3927 0.7555 0.8433

36 44/SU10/3/12 13131 0.0631 0.1021 0.6438 0.5749 0.3588 0.3616 0.3917

37 44/SUIO/6/12 11605 0.0754 0.1505 0.5596 0.4525 0.2790 0.4401 0.3990

38 44/SU/0/9/12 10142 0.0827 0.2083 0.5193 0.3847 0.2367 0.6783 0.4077

39 44/SU/15t310 16411 0.0840 0.1500 0.6143 0.5976 0.5315 0.7466 0.7230

40 44/SU/15/610 14441 0.1055 0.2065 0.4964 0.4750 0.3971 0.6588 0.7231
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Table 15 Brier Scores, 20/20 Scores, and Sharpness for the 71 Model
Cases Introduced in Table 3 (Continued)

CASE DRIER BRIER 20/20 20120 SHARPNESS SHARPNESS SHARPNESS

NAME N MOS PERSISTED MOS PERSISTED MOS PERSISTED OBSERVED

41 44/SU/151910 12609 0.1118 0.2325 0.4644 0.4601 0.3620 0.7066 0.7274

42 44WVI/013112 12450 0.0675 0.1044 0.6746 0.6225 0.5369 0.5815 0.6223

43 44/WI/0/6/12 11821 0.0810 0.1569 0.5982 0.5225 0.4733 0.6304 0,6277

44 44NWIJ0/9/12 10288 0.0929 0.2148 0.5372 0.4791 0.4185 0.7822 0.6358

45 44/WI/15/3/0 14197 0.0935 0.1573 0.5974 0.6338 0.5566 0.8196 0.7988

46 44/WI/15/6/0 11353 0.1115 0.2164 0.4974 0.5538 04548 0.7973 0.8108

47 44/W1/15/9/0 11746 0.1173 0.2350 0.4631 0.5298 0.4133 0.7981 0.8101

48 61/SU/3/W312 11025 0.0843 0.1557 0.6185 0.6461 0.5790 0.8107 0.8639

49 611SU/316112 10020 0.1155 0.2057 0.5250 0.5580 0.5247 0.7676 0.8651

50 611SUI3/9/12 8977 0.1156 0.2070 0.5347 0.5579 0.5307 0.7716 0.8635

51 61/SU/15/3/0 13866 0.0949 0.1645 0.5692 0.6310 0.5107 0.8307 0.8095

52 61/SU/15/6/0 12354 0.1170 0.2130 0.4803 0.5717 0.4175 0.8621 0.8095

53 611SU/15i9/0 12014 0.1165 0.2131 0.4797 0.5702 0.4148 0.8668 0.8114

54 61/WI/3/3/12 11043 0.0871 0.1381 0.6027 0.6653 0.55 19 0.8183 0.8522

55 61/WI/3/6/12 10166 0.1168 0.2111 0.4777 0.5461 0.4339 0.7561 0.8506

56 61/WI/3/9/12 9000 0.1203 0.2287 0.4590 0.5253 0.4127 0.7541 0.8511

57 61/Wi/15/3/0 12771 0.1062 0.1780 0.4973 0.5917 0.3999 0.8235 0.7691

58 61/WI/15/6/0 11827 0.1260 0.2220 0.4032 0.5383 0.2894 0.8484 0.7731

59 61/WI/15/910 10536 0.1275 0.2271 0.3942 0.5296 0.2812 0.8492 0.7738

60 30/SU/21/3/12L 11143 0.0783 0.1147 0.6178 0.6091 0.5147 0.6557 0.7629

61 30/SU121/6/OL 10329 0.0985 0.1628 0.5183 0.4997 0.4069 0.5692 0.7633

62 30/SU/21/9/OL 9289 0.1061 0.1873 0.4875 0.4596 0.3701 0.5550 0.7615

63 30/SU/21/3/12W 2617 0.0487 0.0793 0.7746 0.7658 0.7318 0.8345 0.8785

64 30/SU/21/6/OW 2102 0.0701 0.1435 0.6974 0.6556 0.6637 0.7897 0.8739

65 30/SU/21/9/OW 1719 0.0738 0.1573 0.6766 0.6358 0.6492 0.7865 0.8802

66 61/WI/3/3/12L 8331 0.0883 0.1397 0.5942 0.6578 0.5337 0.8126 0.8548

67 61/WI/3/6/12L 7801 0.1212 0.2023 0.4583 0.5533 0.4073 0.7586 0.8523

68 61/WI/3/9/12L 7073 0.1241 0.2178 0.4383 0.5395 0.3863 0.7645 0.8517

69 611WI/313/12W 1909 0.0763 0.1371 0.6469 0.6867 0.6097 0.8481 0.8523

70 61/WI/3/6/12W 1651 0.0887 0.2532 0.5942 0.5257 0.5584 0.7953 0.8474

71 61/WI/3/9/12W 1738 0.0908 0.3192 0.5978 0.4465 0.5748 0.7658 08550

In this effort we did not have an absolute standard by which to evaluate the MOS

equations. Instead, a useful measure of performance was the relative improvement of

MOS-based forecasts over persistence using the Brier score. In general, we found that
Brier scores for MOS-based forecasts were 35-55% smaller than their persistence-based

counterparts. A quick glance at Figures 50 through 52 shows the qualitative improvement

of the MOS-based forecasts over persistence.
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In Figure 54 we show the averaged percentage improvement of MOS over persis-
tence as a function of forecast length for each box. That figure shows that the relative im-

provement of MOS over persistence increases with increasing forecast length as the

influence of persistence in the forecasts decreases.

The 20/20 Score

The 20/20 score (S2o/2o) measures the fraction of the counts in the contingency table

that are within 20% (i.e., 4 bins) of the diagonal on either side. It is calculated from the

contingency table from the following:

21 min(21j+4)

2 n,. (3-19)
j=1 i=max(1j-4)

The 20/20 scores for all of the 71 cases (grouped by RTNEPH box number) are dis-
played in Figures 55 through 57. The scores are also listed by case number in Table 15. A

perfect forecast would have a 20/20 score equal to one, since all the data points would lie
along the diagonal. A score of zero (the minimum possible score) would correspond to all of

the data points lying outside 20% of the diagonal of the contingency table.

Unlike the results from our analysis of the Brier score, MOS did not outperform per-
sistence consistently with respect to the 20/20 score. Similar to the Brier score results how-

ever, we found a trend toward decreasing skill with increasing forecast length, as expected.

Results varied considerably as functions of the region, season, and time of day. For
example, in the box 44 cases, MOS outperformed persistence (i.e., MOS had higher 20/20
scores than persistence) consistently for the OZ forecast valid time (both winter and sum-
mer), but did not perform as well for the 15Z forecast valid time. In box 61, we found that
MOS outperformed persistence only in two cases, both of which contained only water grid
points (case numbers 70 and 71). In box 30, overall scores (both persistence and MOS)
were higher for the cases with valid forecast time of 9Z than 21Z in all four seasons and
were highest for the all water case (summer, 21Z, case number 63). S20/20 for the MOS-

based forecasts were higher than those corresponding to persistence for many of the 9Z

cases in box 30.

We found that for most box/season/times, MOS forecasts were consistently higher

or lower than persistence over all forecast lengths. For example, if MOS performed better

than persistence for a 3-hour forecast for a given box, season, and valid time, it generally

performed better for the 6- and 9-hour forecasts also.
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As we saw in our analysis of the Brier score results of those Box 30 cases in which
we developed two forecast models (one using the OZ GSM data and the other using the 12Z

data), there was no evidence to suggest that there was any measurable difference in per-
formance. That is, the MOS-based forecast models accounted for any existing GSM spin-
up problems as measured by the 20/20 skill score as well as the Brier score.

Sharpness

Sharpness is a measure of a single cloud cover distribution. It measures the weight
of the distribution within 20% (i.e., 4 bins) of the outer bins. That is, it is the number of
data points whose cloud cover is less than 22.5% or greater than 77.5%.

We computed the sharpness of the observed and forecast (MOS-based and persis-
tence) marginal distributions directly from the contingency table using the following:

21 5 21

Sharpness (Observed) -1 N 211 nij + Z ni (3-20)
j=1 i=1 i=f17

21 5 21

Sharpness (Forecast) 1 1 Y nij + I (321)
iffi j=1 i=17

Sharpness ranges from a maximum of one, corresponding to a distribution in which all of
the data points are in the outer 20% bins, to a minimum of zero, corresponding to all the
data points falling in the interior 60% bins.

Because sharpness characterizes a cloud cover distribution, we gain meaning not
from the value itself, but from comparing the sharpness of one distribution to another. We
computed the sharpness for the ground truth (observed) cloud cover, the persisted cloud
cover, and the MOS-based forecast cloud cover. Those values are included in Table 15. The
bar graphs in Figure 58 through 60 show the sharpness values for observed and forecast
cloud cover for the 71 cases grouped by RTNEPH box number.

Observations of cloud cover tend to have U-, J-, or L-shaped distributions with most
values occurring in the outer (clear and overcast) bins. An example of this type of distribu-

tion was presented in Figure 12. Because persisted cloud cover is simply observed cloud
cover that has been shifted in time, we expect similar sharpness values for those distribu-

tions. The MOS-based forecasts were less sharp than either the observed or persisted
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cloud cover. That was to be expected since the MOS technique (based on least squares
minimization of errors) tends to predict conservative (i.e., tending toward the mean) cloud
cover amounts. Figures 61 and 62 show observed and forecast cloud cover distributions,
respectively, with very different sharpness values.

In fact, MOS-based forecasts become increasingly conservative (i.e., less sharp)
with forecast length, such that a 3-hour forecast is more sharp than a 6-hour forecast
which is more sharp than a 9-hour forecast. This effect is shown clearly in Figure 63 and
has been reported by others as well (Ref. 17).

One method of producing sharper forecasts is to replace the least squares mini-
mization in the linear regression with a method that minimizes absolute error instead.

Also, as discussed in Ref. 26, one could use the logistic response function in categorical
cloud amount forecasts to better model the shape of the cloud cover distributions. Both of
these methods are more difficult and expensive than linear regression because they re-
quire iteration and good initial estimates of model coefficients.

The technique that we employed in this feasibility study emphasized reduction in
total squared error and thus performs very well with respect to the Brier score. In some
operational settings, forecast sharpness may be crucial, and therefore a non-linear tech-
nique that yields sharper forecasts would be preferred.

3.5.2 Estimation of Performance Using the Jackknife Technique

To answer the question "How will the models developed under this effort perform
in the future with independent weather data?" we used the jackknife resampling tech-
nique to estimate the performance of two models and determine the confidence limits on
those estimates.

The jackknife technique is one of a number of resampling techniques that esti-
mates model performance (Ref. 12). It improves upon earlier techniques such as cross val-
idation which divides the data set in two (using one half for model development and the

other half for validation) by using more of the data for development and computing multi-
ple performance measures using different subsamples of the data. Due to the limited size
of our data set, it was necessary to keep as much of the data as possible during evaluation;
the jackknife technique allowed us to do that. In addition, the jackknife technique ac-
counts for any bias that might be present when small samples are used in the estimation.
The method consists of the following steps.

86



STEP 1 Split the model development data set into M groups of equal size. We
used 9 groups of 10 contiguous days each over a season.

STEP 2 Leave out one group of data and develop the regression model (i.e., deter-
mine model coefficients). Repeat the process for each of the M groups,
leaving out a different group of data in each model.

STEP 3 Validate each model with the omitted group of data. Compute a perfor-
mance statistic. We used the Brier score.

STEP 4 Use the sample of M performance statistics along with the performance
computed using the whole data set to compute average performance and
the variance of the average.

We selected two model development data sets from the group of 71 for which to per-
form the jackknife analysis. The first case (#12 from box 30) had the lowest Brier score (i.e.,
the highest performance) of all the 71 cases. The second case (#59 from box 61) had the high-
est Brier score (i.e., lowest performance) of all the cases. It also contained fewer grid points
due to the geometry of the box and thus the presence of off-world points. We selected these
two cases to provide upper and lower bounds for the results of our jackknife analysis.

The jackknife estimates are computed from the M individual performance esti-
mates as follows:

Yall is the estimate using all data

yj is the estimate with the jth group omitted

yj is a "pseudo" estimate defined by

yj = M Ydl - (M-1) yj (3-22)

y* is the jackknife performance estimate

M

y W :* (3-23)
jr1

s! is the estimated variance of y*

M

M(M - 1) 1 yj _ y] 2 . (3-24)
8f1
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The Yall, Yj, y*, and s2 values, computed for the two cases, are presented in Table 16.

There is little change in estimated performance using the jackknife analysis (y*) versus
using the whole data set (Yall) in both cases. This implies that the MOS models are robust

with respect to the variability in the data sets.

In a preliminary analysis we divided the data set into 9 groups by sampling every
ninth grid point from the 15 x 15 grid points in the RTNEPH box over one season. (Recall
that we used 15 x 15 grid points to allow us to compute horizontal gradients for diver-

gence, vorticity, etc.) We found that the variance in the estimated performance was about
a factor of five smaller than the numbers shown in Table 16 which were generated using
the 9 10-day data sets. This was due to the fact that our preliminary sampling technique
which included every ninth grid point had not accounted for the high spatial correlation
in the cloud cover data. Thus our 9 model data sets were highly correlated. By sampling
9 10-day periods instead, as we did in our final analysis, the model development data sets
were less correlated. However, due to the nature of cloud cover data, the resulting vari-
ances (those reported in Table 16) are most likely still overly optimistic. Ideally, one would
evaluate the performance of the MOS-based models against completely independent data
taken from another year.

Table 16 Results of Jackknife Analysis For Cases #12 and #59. The Average
Performance (y*) and Variance (s!) for Both Cases are Highlighted

Case #12 Case #59

yan .0589 .1275

Y1 .0614 .1342

Y2 .0595 .1308

Y3 .0643 .1326

Y4 .0658 .1134

Y5 .0551 .1266

Y6 .0577 .1419

Y7 .0544 .1369

y8 .0549 .1313

y9 .0586 .1263

y" .0575 .1039

5.332e-4 4.578e-4
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3.5.3 Verifying MOS-based Probabilities of Cloud Cover Categories

We used a Bayesian approach to assess the likelihood that the MOS-based forecast
probabilities are "correct". That is, that they accurately represent the frequency of occur-
rence, in nature, of the events of interest. For this evaluation, we selected the same two
model development data sets used in the evaluation of the MOS-based total cloud amount
forecasts presented in Section 3.5.: Case # 12 from box 30 and Case #59 from box 61. These
two cases represent the highest and lowest performance (as measured by the accuracy of
the total cloud amount forecasts) out of the set of 71 listed in Table 3.

The following paragraphs describe our approach in general terms and the way in
which the available data are used in its implementation. Following that description, a key
formula based on the Bayesian viewpoint is presented. (Derivation of this formula is pro-
vided in Appendix B.) Finally, the results are presented in tabular and graphical forms
accompanied by a discussion of their implications.

The Bayesian Viewpoint

To carry out the evaluation task, we must provide a careful definition of the "events
of interest" mentioned above. MOS-based probability forecasts have been developed for
71 cases, each defined by a region (i.e., an RTNEPH box), a season, a forecast valid time,

and a forecast length. In each of the two cases we analyzed, we considered 27 "events of
interest" as follows:

For each one of nine cloud-cover fraction (ccf) bins, Bi, (i.e., BI = "0.1" represents

15% < ccf<= 15%1 , B2 = "0.2" represents 115% < ccf<= 25%1, etc.)

and

For each one of three specified cloud-cover threshold values, Tj, 10.3, 0.5, 0.71,

The event E(i, j) occurs at the specified valid time if the MOS cloud cover forecast
for that time is in bin Bi and the actual ccf at that time is less than or equal to Ti.

For an ideal validation, one would observe several thousand occurrences of each ccf
forecast bin for the region, season, valid time and forecast length of interest. One could
then count the number of times that the actual ccf is less than each threshold of interest
and accept or reject hypotheses regarding the validity of the MOS forecast probabilities
based on the observed frequency of occurrence.
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Since such vast amounts of data are not available for any one model case, we
adopted a Bayesian viewpoint in which MOS-based probabilities of the 27 events, E(i, j),
are generated using one-half of the available data (Ref. 18). These probabilities are then
viewed as prior information, establishing a prior probability measure on the unknown,
true probability that E(i, j) will occur. The other half of the original data is then used to
update that prior probability measure, obtaining a posterior probability measure on the
true probability. If the new data substantially increase the weight at the MOS-based val-
ue, we will have shown consistency among at least the limited data set available. Con-
versely, if the weight is drastically decreased at the MOS value, then applicability of the
MOS model for the given forecast valid and lead times) is called into question.

A Formula for Posterior Probability

Results presented in this section are calculated using the following formula for the
posterior probability (p*) that the true probability of the event of interest (p), is equal to

the MOS forecast probability (j).

*= L(P/D 2 ) (3-25)
L(p/D 2) + I(n, k)

where

L(j/D 2 ) = k (1-i)n-k = likelihood of j given data set D2

n = total number of observations in data set D2

k = number of times that E(ij) occurred in D,

and

1

I(n,k) = f xk(l-x)n'k dx. (3-26)

0

To evaluate the integral, we used the following M-term approximation:

M
I(n,k) f Xm(1Xm)n'kAm (3-27)

M=1
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where (Am, Xm) are the width and midpoint of the mth interval in the sum. All of the results

presented here were calculated with M = 100 and Am = 0.01. Typically, only fifteen terms

of the sum surrounding the maximum of the integrand were required to evaluate the sum
accurately to six significant digits. This is because of the integrand's extremely narrow
peak caused by the large values of n and k for most cases (e.g., n = 729 and k = 568 for case

#12, ccf category 0.3, with threshold = 0.5).

Results

We considered two cases, each defined by a region (i.e., an RTNEPH box), season,

forecast valid time, and forecast length:

Case #12 - Box 30, summer, three hour forecast valid at 09Z

Case #59 - Box 61, winter, nine hour forecast valid at 15Z.

The data sets for each case were divided into the first and second halves of each season.
Data set 1 (columns 2, 5 and 8 of Tables 17 and 18) was used to develop MOS-based models

of probability as described in Section 3.4.2 of this report. The "Data Set 1" columns in the
tables are the resulting MOS-forecast probabilities. Data set 2 was then used as "new"
data for verifying the correctness of those forecasts. The "Data Set 2" columns in the tables
are the frequencies of occurrence as described above.

If the MOS models are any good at all, we would expect that the MOS forecast prob-

abilities and the frequencies of occurrence would be reasonably close to each other. In fact,
looking at Tables 17 and 18, this is generally the case. But, are the differences significant?
A Bayesian viewpoint will help to answer that question.

We will discuss two examples, forecast ccf categories 0.6 and 0.7 with threshold =

0.3 in each example, and use the data for case #59 (Table 18) to illustrate the approach.
The events of interest are that the actual ccf is less than 30% when the MOS forecast ccf

is between 55% and 65% or between 65% and 75%, respectively. We assume that the un-
known, true probability is a random variable distributed on [0, 1] with 50% of the proba-

bility at the MOS-value (0.30 and 0.18 for our two examples) and the other 50%

distributed uniformly on [0, 1]. We then calculate the posterior probability at the MOS-
value based on processing the new (Data Set 2) data. These posterior probabilities are,
from the columns labeled "Probability" in Table 18, 0.31 and 0.96 for our two examples.
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Thus, for the first example (MOS forecast category 0.6 and a 30% ccf threshold) con-

sidering the second data set reduced our confidence that the MOS forecast probability (0.30)
is correct from 0.5 (the prior probability) down to 0.31. On the other hand, for a MOS fore-

cast ccf in the 0.7 bin, the probability is increased substantially from 0.5 up to 0.96. In the

former case, considerable variability in the data over the season of interest is indicated,
casting doubt on the "correctness" of the resulting MOS model. In the latter case, however,
the second data set considerably strengthened our confidence in the MOS forecast, indicat-

ing that at least for the one season of data available, the MOS forecast probability is correct.

In the two tables we have used shading to identify cases in which the MOS forecast

probability is "strongly rejected" and "marginally accepted" (or "neutral"). Somewhat ar-
bitrarily, we used posterior probability ranges [0.0, 0.3] and [0.3, 0.8] to define these two

designations.

Figures 64 through 69 present cross-sections of the data from the two tables which
highlight the sensitivity of our results to variations between the two parts of the parti-
tioned data sets. In each figure, the line graphs show the MOS forecast probabilities (solid

squares, Data Set 1) and frequencies of occurrence (hollow squares, Data Set 2) as func-
tions of the forecast ccf category. The superimposed bars represent the posterior probabili-
ties for each case and clearly show those cases for which the data set partitions are most
inconsistent.

While it is difficult to generalize regarding why certain of the MOS forecasting

models are rejected, some understanding of the causes can be obtained by examining a few

specific examples. We will consider the case #12 (box 30) results found in Table 17 and
plotted in Figures 64 through 66 and examine the evaluation results for three specific ccf

forecast categories in more detail.

For ccf forecast category 0.7, Table 17 reveals that the MOS model was strongly af-

firmed for all three thresholds (0.3, 0.5, ancL V 7). Figure 70 contains plots of the experimen-

tal distribution functions of the true ccf (i.e., the RTNEPH analysis values) for only those
occasions at which the MOS-based ccf forecast category was 0.7. In the figure, arrows indi-

cate the threshold locations; the intercepts of the Data Set I and 2 curves with those thresh-

olds define the probabilities found in Table 17 under Forecast Cloud-Cover Fraction 0.7. For
this forecast category, the two distribution functions are close to another at the threshold

values, consistent with the strong affirmation of the MOS-based probability.
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Contrast the above case with that for ccf forecast category = 0.2 whose experimen-

tal distribution functions are plotted in Figure 71. In this case, because of the substantial-

ly larger percentage of occurrences of clear conditions (ccf < 0.15) in Data Set 2 (66%) than
Data Set 1 (60%), the distribution intercepts with the 0.3 threshold line are farther apart

(0.752 and 0.794 are the actual values). Thus, for the threshold = 0.3 case, the MOS model
was strongly rejected by the evaluation procedure, while for the two higher threshold, no

inconsistency was noted.

Similarly, for ccf forecast category = 0.8, shown in Figure 72, the distributions are

rather far apart at the 0.7 threshold (and the MOS model is strongly rejected) while the

models are supported for the two lower threshold values. In this case, the discrepancies

arise because Data Set 2 contains a significantly larger percentage of cloudy conditions

(69%) than Data Set 1 (59%).

We can summarize the above as follows: the MOS probability forecasts were re-

jected when the differences between the cloud-cover fraction distributions of the original

and verifying data sets occurred at ccf values near the threshold value of interest. (I.e.,
differences in the fraction of clear cases caused the threshold = 0.3 model to be rejected,

and differences in the fraction of very cloudy cases cause the threshold = 0.7 model to be

rejected.) Basing the MOS model on the complete data set (instead of on the earliest 50%

as in this evaluation) should improve the model robustness with respect to seasonal varia-
tions. Whether or not that improvement will be sufficient must be evaluated using the

multi-year data sets.

OVERALL CONCLUSIONS

1. For most events (39 out of the 54 examined), the MOS forecast values are
affirmed by the second data set. This indicates, at least, that within the one season
for which we have data, the MOS-models for these two cases are reasonably good.

2. For 5 out of the 54 cases, the MOS forecast values were strongly rejected. However,
comparing the line plots in Figures 64 through 69 shows that, even for those five
cases, the differences between the frequency of occurrence and the MOS forecast are
not very large. Some variation within the season is indicated, but the MOS models
are still not drastically in error. (For example: for case #12, box 30, with MOS forecast
ccf = 0.2, the forecast probability that the actual ccf would be less than 0.3 was 0.75,
but in fact, in Data Set 2, 79% of the cases had actual ccf less than 0.3.)
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BOX 61, WINTER
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Normal Probability Plot of Residuals
Box 30, Fall, 21Z, 3-Hour Forecast

5

4

3

S2

S1

0 0

4) -l

• 2

-3

-4

-- Normal

-5 E:-'pectec

-1.5 -1 -. 5 0 .5 1 1.5

Residuals

Figure36 Normal Plot ofthe Residuals for Case #24

104



Normal Probability Plot of Residuals
Box 30, Fall, 21Z, 6-Hour Forecast
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Normal Probability Plot of Residuals
Box 30, Fall, 21Z, 9-Hour Forecast
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Normal Probability Plot of Residuals
Box 44, Winter, OZ, 3-Hour Forecast
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Normal Probability Plot of Residuals
Box 61, Summer, 15Z, 6-Hour Forecast

5

4

3

S2

1

0 0
z

•) -1

x

-3

-4
-- Normal

-5 A. Expected

-1.5 -1 -. 5 0 .5 1 1.5

Residuals

Figure 4 Normal Plot of the Residuals for Case #52
Showing a Poor Fit to the"Normal Line"

108
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Box 30. Foil, 21Z, 9-Hour Forecast
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Observed Cloud Cover Shown in Figure 61
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4. RECOMMENDATIONS

As discussed in the previous section, the MOS-based forecast models developed

under this effort performed well in terms of overall variance reduction and robustness.
GSM variables added substantially to the skill of the cloud cover forecasts (we saw 35-55%
improvement when compared with persistence forecasts alone). Our analysis showed that
the MOS approach using Global Spectral Model variables in additioD to persistence shows
promise as a low cost cloud forecasting tool. (We use the term "low cost" because the MOS

approach uses existing and previously verified forecast models along with existing cloud
analysis databases. In addition, the MOS model as described here uses linear regression
techniques that are computationally efficient.)

However, throughout this report we have also pointed out the limits of the models
developed under this effort. In this section, we discuss those limitations and offer recom-
mendations in three general areas: model development data, the modeling approach, and
performance analysis and validation.

4.1 MODEL DEVELOPMENT DATA

Develop Models Using Higher-Resolution GSM Data

We generated MOS-based forecasts of total cloud cover at eighth-mesh grid resolu-

tion. Potential predictors at that resolution included terrain type, elevation, and persisted
cloud amount. The remaining predictors used during development were derived from the
40-wave Global Spectral Model with a grid resolution over four times more coarse than
eighth-mesh. Cloud processes important at eighth-mesh resolution (such as local terrain ef-
fects, sea breeze effects, and localized convection) are not modeled with the 40-wave GSM.
Therefore the MOS equations developed with the 40-wave model data cannot support cloud
formation and evolution at that resolution. In addition, the 2.50 grid used in the 40-wave
spectral model effectively contains area averages of the model variables with respect to the
much finer-resolution eighth-mesh grid, resulting in forecasts that are too smooth.

We recommend using higher-resolution GSM data in model development such as

is currently available with the 80-wave (and higher) versions of the spectral model. The
recently released Eta model from the National Weather Service is a good example of the
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recent advances in global weather modeling; it has a horizontal grid resolution of approxi-

mately 80 km with 38 levels in the vertical. In the future, even higher-fidelity models will

be available. Of course, higher model resolution alone is not sufficient to guarantee im-

proved MOS forecasts. The models themselves must accurately predict the growth and

decay of disturbances at those resolutions.

The increased spatial resolution would not necessarily increase data processing

and storage costs ifa similar number ofgrid point locations (such as the 15 x 15 grid points

per RTNEPH box used in this analysis) were modeled. However, increases in the number

of vertical levels can quickly increase the number of potential predictors. If necessary, the
number of variables in the vertical could be reduced by using only their most significant

principal components.

As with any significant change to the driving model, at least two years of stable
development data would be required to develop operational MOS equations based on
higher-resolution model output.

Include RTNEPH Layer Cloud Amounts and Types

Cloud layer fields reported in the RTNEPH analysis grids (or available from pilot
reports, upper air analyses, etc.) could be used in conjunction with the humidity profiles

generated in the GSM. Using cloud layer data would allow us to adjust humidity layers for

the thickness of the cloud layer within each sigma level and thus eliminate any ambiguity

concerning whether or not a cloud layer straddles two or more sigma levels. This would re-
sult in better estim i -es for the maximum layer humidity, a strong predictor for cloud

amount. The quality of the cloud layer data, the additional value it might bring to the MOS

equations, and the increased data processing and storage costs would all need to be weighed

before deciding whether or not to include these data in future modeling efforts.

Use Independent Persistence and Response Data

In this effort we used the RTNEPH analysis grids both as persisted cloud cover and
"ground truth." Thus, there is potentially a high correlation between the two. We at-

tempted to remove the temporal correlation by removing all data points which had not
been updated in the three hours prior to the forecast valid time. However, the time flag

available to verify data age only indicates the age of the newest data source for the grid
point; not necessarily the age of the total cloud cover reported for that grid point. There-

fore, some old data may still be present in the development data sets.
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In considering the results of this feasibility study, it is important to note the relative

improvement of the MOS approach over and above persistence to account for potential

artificial correlations in the development data sets due to the age of the data. In order to

assess the absolute impact of persistence and MOS-based forecasts, independent persis-

tence and response data sources should be used. Candidate data sources other than the

RTNEPH analysis fields include: surface observations and GOES-based cloud analyses.

4.2 MODELING APPROACH

Include Additional Years of Data

It is well known that meteorological conditions vary significantly from year to year.

We used one year of data to develop MOS models in this feasibility study. Although accept-

able for a feasibility study such as this, it would be imperative to use additional years of

data (at least two) for operational use. Once the modeling mechanism is defined, process-

ing additional data is a mechanical process. By using additional years of data we could

achieve more stable regression coefficients along with a predictor set that is more mean-

ingful and less subject to any single year's meteorological peculiarities.

Minimize Absolute Error

Linear multiple regression algorithms, like the one used in this feasibility study,

use least squares techniques to determine the MOS equations. This accentuates those

cases with large residuals and can result in an overly conservative fit to the data (i.e., ov-

erly smooth forecasts). To make sharper forecasts, it may be desirable to minimize abso-

lute error instead of squared error. The additional value of using absolute error would

need to be evaluated against the possibly significant increase in computational time to

perform the regression.

Use Logistic Regression

Logistic regression (Ref. 1) is a computationally intensive regression technique. In

Section 3.1.1 we noted its advantages for modeling binary response functions such as

categorical cloud amounts. The logistic function does not produce responses that lie out-

side the range [0, 1] as linear regression techniques do. Future efforts may evaluate the

need for a non-linear regression technique such as logistic regression by weighing the sig-

nificant additional computational costs (logistic regression is an iterative method which

requires good initial estimates of the model parameters) against its advantages.
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Use Neural Networks

Another non-linear modeling technique that is being used more and more, is neural
networks. Neural networks provide a modeling capability that is different from conven-
tional methods. Instead of using a particular functional dependence between the mea-
sured data and desired prediction, neural networks adjust themselves to give an optimal
(with respect to some metric, such as the mean square error) non-linear transformation

between predictors and the response variable. In addition, neural networks can be used
to determine the minimum set of variables necessary to solve a problem.

The availability of COTS neural net software tools provides for a low risk/potentially
high-payoff approach to the area of cloud cover prediction. One such software tool
(ExploreNet from HNC) has already shown promise for this problem in a small test case
performed at TASC.

4.3 PERFORMANCE ANALYSIS AND VALIDATION

Compute Other Performance Measures

In this effort we selected three performance statistics (Sharpness, Brier score, and
20/20 score) to measure the skill of the MOS-based forecasts. These three statistics were
selected in consultation with PL personnel as meaningful in the context of potential ap-
plications for this MOS approach. Other applications may emphasize different aspects of

the model forecasts. For example, certain satellite systems may place more emphasis on
reliability measures. Future analyses could include more or different performance mea-
sures to accommodate the interests of the customer community.

Validate More Cases

We selected two cases for evaluation from the 71 development cases analyzed in

this study. Those two cases were chosen because they had the highest and lowest perfor-
mance of all 71 cases with respect to overall reduction in variance. It was our hope that

by studying these two extreme cases we could bound our error estimates for both the total
and categorical cloud amount forecasts. Additional cases should be analyzed in the future
to get a better handle on the variation of the forecast strengths and weaknesses as a func-
tion of time of day, season, and region.
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Validate Against More Data

In the two cases mentioned above we evaluated both total and categorical cloud
amount forecasts by developing sample models using a portion of the data set and validat-
ing those against the remainder of the season of data.

It would be crucial if this approach was to be taken toward an operational model,
that the models be tested against additional seasons of cloud data from independent years
containing a greater variety of weather conditions. The estimates of model robustness de-

termined in our analysis were most likely overly optimistic since the variability in one

season is most likely less than across multiple seasons. We recommend developing models
with at least two years of data and validating the models against at least two additional
independent years.
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APPENDIX A

A list of all of the variables (listed by their abbreviated names) used in the pool of

potential predictors follows. A short description of each variable is provided along with the

appropriate units and any specific numerical ranges if applicable.

VARIABLE VARIABLE DESCRIPTION UNITS RANGE

NAME

DAY day of the month (1-31) [1.311

TYPE terrain type at eighth-mesh grid point at center (lower right) of half-mesh cell 0 a water.
1 W land,
3 - coast

ELEV terrain elevation at eighth-mesh grid point at center (lower right) of half- meters
mesh cell

LAT latitude at center of grid point degrees

LON longitude at center of grid point degrees

ZENITH sine of solar zenith

UL low level wind in zonal direction meters/sec

UM middle level wind in zonal direction meters/sec

D3UL 3-hr change in low level zonal wind meters/sec

D3UM 3-hr change in mid level zonal wind meters/sec

D6UL 6-hr change in low level zonal wind meters/sec

D6UM 6-hr change in mid level zonal wind meters/sec

D9UL 9-hr change in low level zonal wind meters/sec

D9UM 9-hr change in mid level zonal wind meters/sec

VL low level wind in meridional direction meters/sec

VM middle level wind in meridional direction meters/sec

D3VL 3-hr change in low level meridional wind meters/sec

D3VM 3-hr change in mid level merdional wind meters/sec

D6VL 6-hr change in low level meridional wind meters/sec

D6VM 6-hr change in mid level meridional wind meters/sec

D9VL 9-hr change in low level meridional wind meters/sec

D9VM 9-hr change in mid level meridional wind meters/sec
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VARIABLE VARIABLE DESCRIPTION UNITS/RANGE
NAME

SPEED wind speed at the surface meters/sec

SHEAR wind shear between high and low layers meters/sec

TL low level average temperature Kelvin

TM middle level average temperature Kelvin

TDIF1 temperature difference between sigma layers 1 and 0 Kelvin
(approx. T85 mb - Tsurace)

TDIF2 temperature difference between sigma layers 4 and 1 Kelvin
(approx. T5o mb - T850 ob)

RHL low level average relative humidity [0.0.1.0]

LNRHL natural logarithm of low level relative humidity

RHL2 low level relative humidity squared

RHL4 low level relative humidity raised to the power of 4

RHM middle level average relative humidity (0.0,1.01

LNRHMO natural logarithm of middle level relative humidity

RHM2 middle level relative humidity squared

RHM4 middle level relative humidity raised to the power of 4

RHMX maximum relative humidity of six sigma layers [0.0.1.01

RHAB relative hur-;dity at layer above maximum [0.0,1.0]

D3RHL 3-hr change in low level relative humidity [-1.0,1.0]

D3RHM 3-hr change in middle level relative humidity [-1.0,1.0]

D6RHL 6-hr change in low level relative humidity [-1.0,1.0]

D6RHM 6-hr change in middle level relative humidity [-1.0,1.0]

D9RHL 9-hr change in low level relative humidity [-1.0,1.01

D9RHM 9-hr change in middle level relative humidity 1-1.0,1.0]

THICK 850 mb thickness meters

SFCP surface pressure Pascals

D3P 3-hr change in surface pressure Pascals

D6P 6-hr char- .. surface pressure

D9P 9-hr change in surface pressure Pascals

SFCH model surface height meters

DVL low level divergence second-1
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VARIABLE VARIABLE DESCRIPTION UNITSI RANGE
NAME

DVM middle level divergence second-1

DVH high level divergence second-'

D3DVL 3-hr change in low level divergence second- 1

D3DVM 3-hr change in middle level divergence second- 1

D3DVH 3-hr change in high level divergence second-1

D6DVL 6-hr change in low level divergence second-1

D6DVM 6-hr change in middle level divergence second-1

D6DVH 6-hr change in high level divergence second-1

D9DVL 9-hr change in low level divergence second-'

D9DVM 9-hr change in middle level divergence second-1

D9DVH 9-hr change in high level divergence second-'

VTL low level vorticity second-'

VTM middle level vorticity second-'

VTH high .level vorticity second-1

D3VTL 3-hr change in low level vorticity second-1

D3VTM 3-hr change in middle level vorticity second-'

D3VTH 3-hr change in high level vorticity second-1

D6VTL 6-hr change in low level vorticity second"-

D6VTM 6-hr change in middle level vorticity second-1

D6VTH 6-hr change in high level vorticity second-1

D9VTL 9-hr change in low level vorticity second-'

D9VTM 9-hr change in middle level vorticity second-1

D9VTH 9-hr change in high level vorticity second-1

TAL low level temperature advection Kelvin/sec

TAM middle level temperature advection Kelvin/sec

TAH high level temperature advection Kelvin/sec

D3TAL 3-hr change in low level temperature advection Kelvin/sec

D3TAM 3-hr change in middle level temperature advection Kelvin/sec

D3TAH 3-hr change in high level temperature advection Kelvin/sec

D6TAL 6-hr change in low level temperature advection Kelvin/sec

D6TAM 6-hr change in middle level temperature advection Kelvin/sec
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VARIABLE VARIABLE DESCRIPTION UNITS/RANGE

NAME

D6TAH 6-hr change in high level temperature advection Kelvin/sec

D9TAL 9-hr change in low level temperature advection Kelvinsec

DgTAM 9-hr change in middle level temperature advection Kelvir/sec

D9TAH 9-hr change in high level temperature advection Kelvin/sec

WL low level vertical velocity second"1

WM middle level vertical velocity second-1

WH high level vertical velocity second- 1

D3WL 3-hr change in low level vertical velocity second-'

D3WM 3-hr change in middle level vertical velocity second-1

D3WH 3-hr change in high level vertical velocity second-1

D6WL 6-hr change in low level vertical velocity secondt-=

D6WM 6-hr change in middle level vertical velocity second- 1

D6WH 6-hr change in high level vertical velocity second-1

D9WL 9-hr change in low level vertical velocity second-1

D9WM 9-hr change in middle level vertical velocity second-'

D9WH 9-hr change in high level vertical velocity second- 1

WRHL product of low level vertical velocity and relative humidity second-'

WRHM product of middle level vertical velocity and relative humidity second-'

DELEV elevation gradient in local average wind direction (normalized to dimensionless
grid box size)

ACCL3 3-hr upwind NEPH cloud cover (averaged to half mesh) using average [0.0,1.0)
low level wind

ACCL6 6-hr upwind NEPH cloud cover (averaged to half mesh) using average [0.0,1.0]
low level wind

ACCL9 9-hr upwind NEPH cloud cover (averaged to half mesh) using average [0.0,1.0]
low level wind

ACCM3 3-hr upwind NEPH cloud cover (averaged to half mesh) using average (0.0,1.01
middle level wind

ACCM6 6-hr upwind NEPH cloud cover (averaged to half mesh) using average [0.0,1.0]
middle level wind

ACCM9 9-hr upwind NEPH cloud cover (averaged to half mesh) using average [0.0,1.0)
middle level wind
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VARIABLE VARIABLE DESCRIPTION UNITS/ RANGE
NAME

ACCH3 3-hr upwind NEPH cloud cover (averaged to half mesh) using average high 10.0,1.0]
level wind

ACCH6 6-hr upwind NEPH cloud cover (averaged to hall mesh) using average high 10.0.1.0!
level wind

ACCH9 9-hr upwind NEPH cloud cover (averaged to halt mesh) using average high [0.0,1.0]
level wind

RH50 binary variable that is 1 if relative humidity is greater than 50%. else 0 0.1

RH70 binary variable that is 1 if relative humidity is greater than 70%, else 0 0.1

RH90 binary variable that is 1 if relative humidity is greater than 90%, else 0 0,1

NEPH3 RTNEPH cloud cover at the eighth-mesh grid point at the center (lower [0.0.1.01
right) of the half-mesh cell 3 hours before valid time

NEPH6 RTNEPH cloud cover at the eighth-mesh grid point at the center (lower [0.0,1.01
right) of the half-mesh cell 6 hours before valid time

NEPH9 RTNEPH cloud cover at the eighth-mesh grid point at the center (lower (0.0,1.01
right) of the half-mesh cell 9 hours before valid time

NEPH12 RTNEPH cloud cover at the eighth-mesh grid point at the center (lower [0.0,1.01
right) of the half-mesh cell 12 hours before valid time

NEPH15 RTNEPH cloud cover at the eighth-mesh grid point at the center (lower [0.0,1.01
right) of the half-mesh cell 15 hours before valid time

NEPH18 RTNEPH cloud cover at the eighth-mesh grid point at the center (lower [0.0,1.01
right) of the half-mesh cell 18 hours before valid time

NEPH21 RTNEPH cloud cover at the eighth-mesh grid point at the center (lower [0.0,1.0]
right) of the half-mesh cell 21 hours before valid time

NEPH24 RTNEPH cloud cover at the eighth-mesht grid point at the center (lower [0.0,1.01
right) of the half-mesh cell 24 hours before valid time
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APPENDIX B

In this appendix we present a derivation of the formula for posterior probability

that produced the evaluation results on MOS forecast probabilities reported in Sec-
tion 3.5.3. While elementary, the derivation requires careful use of delta functions to rep-
resent probability measures (equivalently, probability density functions) which are
defined on a continuous domain (the interval [0, 1] in this case) yet have non-zero weight
(or probability) at an isolated point.

In the derivation, we assume that the event of interest, E(i, j), has been fixed (i.e.,
a ccfbin, Bi, and a threshold value, Tj, have been selected) and suppress notation identify-
ing these parameters. Define

p = the true probability that E(ij) will occur

1 = the MOS forecast probability of E(ij) based on data set Di

n = the number of observations in data set D2 for which ^i is in bin Bi1
k = the number of observations in data set D2 for which E(ij) occurs.

Now, our Bayesian viewpoint picks, somewhat arbitrarily, the following prior prob-
ability measure on the unknown (true) probability, p:

= 0.5 8(p-) + 0.5, 0 !.- pS 1.0 (B-i)

pto) = 0 , otherwise

where 8(x) is a delta function concentrated at x = 0. Once data set D2 has been analyzed
(i.e., the values of n and k have been determined for D2), the likelihood of a particular
value, y, is defined by

L(y/D 2) = yk(l_y)n-k. (B-2)

Note that the likelihood has the form of a binomial density function (lacking only a scaling

constant) because data set D2 is assumed to provide n independent trials. Each "trial" con-
sists of comparing the actual cloud cover fraction at the forecast valid time with the
selected threshold, Tj.
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Using Eqs. B-I and B-2, the posterior probability measure on p has the form

f = I (0.5c)-pk(ljp)n-k[6(p-p) + 1.0], 0 ! p < 1.0 (B-3)

p 0 , otherwise

where the constant, c, must be chosen so that the integral over [0, 1] is equal to 1.0. Carry-

ing out the integration results in

k~-^n- + XNI-Xk1 )n-kdXI
0.5c =p k(p ) fk +. (B-4)

So, to calculate the posterior probability (p*) that p = p, we can evaluate the following

* = lim fP/D2(p)dp" (B-5)

A-0 .p-A

Substituting Eqs. B-3 and B-4 into Eq. B-5 and evaluating the limit yields the desired for-

mula, Eq. 3-25.
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